Project 12.10a: Maclaurin Series

Objective

To investigate the approximation of a function by its Maclaurin series using Maple.

Narrative

If you have not already done so, read Section 12.10 of the text.
In this project we investigate the approximation of $f(x)=\sin x$ and $f(x)=\ln (1+x)$ by their respective Maclaurin series expansions. In so doing we introduce two new commands:

$$
\begin{array}{ll}
\text { taylor }(\mathrm{f}(\mathrm{x}), \mathrm{x}=\mathrm{a}, \mathrm{n}) & \text { finds the } n \text {th order Taylor series expansion of } f(x) \text { about the point } x=a \\
\mathrm{p}:=\operatorname{convert}(\mathrm{g}, \operatorname{polynom}) & \text { truncates the Taylor series approximation } g(x) \text { to the polynomial } p(x)
\end{array}
$$

Tasks

1. a) Type the command lines in the left-hand column below into Maple in the order in which they are listed. These commands are aimed at producing several Maclaurin series approximations to $f(x)=\sin x$.
```
> # Project 12.10a: Mclaurin Series
> # Part a
> restart; Clear Maple's memory.
f := x -> sin(x); Let f(x)=\operatorname{sin}x.
> t2 := taylor(f(x),x=0,2); p2 := convert(%,polynom); Let p
    series approximation of f(x).
> t4 := taylor(f(x),x=0,4); p4 := convert(%,polynom); Let p
    series approximation of f(x).
> t6 := taylor(f(x), x=0,6); p6 := convert(%,polynom); Let p6(x) be the 6th order Maclaurin
    series approximation of f(x).
> t8 := taylor(f(x), x=0,8); p8 := convert(%,polynom); Let p
    series approximation of f(x).
> plot({f(x),p2,p4,p6,p8},x=-2*Pi..2*Pi,y=-2..2); Plot f(x), p
    p
```

b) Continue by typing the command lines in the left-hand column below into Maple in the order in which they are listed. These commands are aimed at producing several Maclaurin series approximations to $f(x)=\ln (1+x)$.

```
> # Part b
> restart;
> f := x -> ln(1+x);
> t2 := taylor(f(x),x=0,2); p2 := convert(%,polynom);
```

Clear Maple's memory.
Let $f(x)=\ln (1+x)$.
Let $p_{2}(x)$ be the 2 nd order Maclaurin
series approximation of $f(x)$.
$>\mathrm{t} 3:=\operatorname{taylor}(\mathrm{f}(\mathrm{x}), \mathrm{x}=0,3)$; $\mathrm{p} 3:=\operatorname{convert}(\%$, polynom $) ;$ Let $p_{3}(x)$ be the 3rd order Maclaurin
series approximation of $f(x)$.
$>\mathrm{t} 4:=\operatorname{taylor}(\mathrm{f}(\mathrm{x}), \mathrm{x}=0,4) ; \mathrm{p} 4:=\operatorname{convert}(\%, \mathrm{polynom}) ;$ Let $p_{4}(x)$ be the 4th order Maclaurin
series approximation of $f(x)$.
$>\mathrm{t} 5:=\operatorname{taylor}(\mathrm{f}(\mathrm{x}), \mathrm{x}=0,5)$; p5 := convert $(\%$, polynom $)$; Let $p_{5}(x)$ be the 5 th order Maclaurin
series approximation of $f(x)$.

```
> plot({f(x),p2,p3,p4,p5},x=-2..2,y=-8..2); Plot f(x), p
    p
> plot({f(x),p2,p3,p4,p5},x=-1..1,y=-1..1);
Plot }f(x),\mp@subsup{p}{2}{}(x),\mp@subsup{p}{3}{}(x),\mp@subsup{p}{4}{}(x),\mathrm{ and
p
```

2. On the graphic you produced for part (a) of Task 1 , label by hand the graphs of $f(x)$ and $p_{2}(x), p_{4}(x)$, $p_{6}(x)$, and $p_{8}(x)$. Label the graph of $p_{2}(x)$ by " $p_{2}(x)$ ", for example.
3. On both graphics you produced for part (b) of Task 1:
a) draw the line whose equation is $x=-1$ by hand, and
b) label by hand the graphs of $f(x)$ and $p_{2}(x), p_{3}(x), p_{4}(x)$, and $p_{5}(x)$. Label the graph of $p_{2}(x)$ by " $p_{2}(x)$ ", for example.

Comments

Note how well both power series approximate the given functions near the origin. Also note the differences between power series which converge over the entire real number line $(f(x)=\sin x)$ and those that do not $(f(x)=\ln (1+x))$.

