Project 3.4: Ballistics

Objective

To illustrate an important application of differentiation to ballistics.

Due Date:

Narrative

If you have not already done so, do Project 3.8 Differentiation. In that project we illustrate how derivatives can be computed in Maple.

If a projectile is fired vertically upward with an initial velocity of v_0 m/sec from an initial position s_0 meters above the ground (see the figure to the right), then (neglecting air resistance) after t sec the projectile is

$$s = s(t) = -\frac{1}{2}gt^2 + v_0t + s_0$$

meters above the ground, where $q = 9.8 \text{ m/sec}^2$ is acceleration due to gravity, and the velocity of the projectile, after t seconds, is

$$v = v(t) = D_t(s(t)) = -gt + v_0$$

meters per second. (If s is measured in feet ft and v is measured in ft/sec, then q = 32 ft/sec².)

Task

a) Type the command lines in the left-hand column below into Maple in the order in which they are listed.

> # Your name, today's date	
> # Project 3.4: Ballistics	
> restart;	Clear Maple's memory.
> g := 9.8; t0 := 0; s0 := 100; v0 := 128;	Let $g = 9.8$, $t_0 = 0$, $s_0 = 100$, and $v_0 = 128$. (In this project we'll be using metric units.)
> s := t -> -0.5*g*t^2+v0*t+s0;	Let the distance $s(t) = -\frac{1}{2}gt^2 + v_0t + s_0$.
> plot(s(t),t=t020);	Graph $s(t)$ for $t \in [t_0, 20]$. Observe that after 20 sec, the projectile is still in the air.
	Let's find when the projectile hits the ground.
<pre>> solve(s(t)=0,t);</pre>	Find when $s(t) = 0$. You should get two values: one negative and one positive. The positive value is the time at which the projectile hits the ground.
> t1 := %[2];	Let t_1 be the the <i>positive</i> value. (We're assuming here that the second value is positive; if it's the first value that's positive, type t1 := %[1]; instead.)
> plot(s(t),t=t0t1);	Graph $s(t)$ for $t \in [t_0, t_1]$.

>	v := D(s);	Let the velocity $v(t) = D_t(s(t))$.
>	v(t1);	Find the velocity of the projectile when it hits
		the ground.
>	<pre>t_smax := solve(v(t)=0,t);</pre>	Find the time t_{smax} at which the velocity of the
		projectile is 0; t_{smax} is the time it takes the
		projectile to reach its maximum altitude $s(t_{smax})$
>	v(t_smax);	This just checks Maple's work: the result should be
		zero (or close to zero).
>	s(t_smax);	Find the maximum altitude $s(t_{smax})$ of the
		projectile.
>	<pre>plot(v(t),t=t0t1);</pre>	Plot v as a function of t for $t \in [t_0, t_1]$.

At this point, make a hard-copy of your typed input and Maple's responses. Then ...

b) Label by hand the coordinate axes in the second graphic you produced. (One should be a *t*-axis, and the other an *s*-axis.) Plot and label the points (t, s(t)) for $t = t_0$, $t = t_1$, and $t = t_{smax}$ in this graphic.

c) Label by hand the coordinate axes in the third graphic you produced. (One should be a *t*-axis, and the other a *v*-axis.) Plot and label the points (t, v(t)) for $t = t_0$, $t = t_1$, and $t = t_{smax}$ in this graphic.

Your lab report will be a hard copy of your typed input and Maple's responses (both text and hand-labeled graphics).