C: ANSWERS TO SELECTED PROBLEMS

 

Chapter 3.1, Trees and Equally Likely Outcomes

   1.      S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}.

   3.      S = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 30, 36}.  Remember, repeated

            elements are rostered only once in a set.

   5.      , S = {1H, 1T, 2H, 2T, 3H, 3T, 4H, 4T, 5H, 5T, 6H, 6T}.

   7.      , S = {ABC, ACB, BAC, BCA, CAB, CBA}.

   9.      There will be three different outcomes on the tree diagram, S = {RB, BB, BR}.

  11.     

  13.      5,040.

  15.      .

  17.     

  19.      4! = 24.

  21.      .

  23.      Each of the 5 persons will shake hands with 4 other people.  .  However, this includes a

            second handshake for each pair of people, so we divide this number in half.  There are 10.

  25.      .

  27.      .

  29.      .

  31.      .

 

 

Chapter 3.2, Permutations

   1.      [a]  120,  [b]  720,  [c]  5,  [d]  1.

   3.      P(20, 3) = 6,840.

   5.      P(7, 4) = 840.

   7.      There are 11 letters of which the M, A, and T are each repeated twice, .

   9.      .

  11.      Fixing one seat at the table converts the problem to 14 seats (1 vacant) in a row, or 13! ways.

  13.      .

  15.      Start with (8 - 1)! ways to place 8 keys on a ring (circular permutations) then multiply by 2 for

            each key (each key could face up or down).  Therefore, .

  17.      .

  19.      .

  21.      .

  23.      .

  25.      Start with the total number of ways with no restrictions, , then subtract the number of

            ways with all evens, 0 (there is only 2 even elements); and subtract the number of ways for

            all odds, .  That is, 60 Ð 0 Ð 6 = 54.

  27.      8 games are required.

  29.      The row could begin with a boy or a girl, 2 choices.  Then, P(5,5) ways to seat the boys and

            P(5,5) ways to seat the girls.  .

  31.      .

 

 

Chapter 3.3, Combinations

   1.      [a]  1,  [b]  210,  [c]  1,  [d]  6.

   3.      C(20, 3) = 1,140.

   5.      C(52, 5) = 2,598,960.

   7.      .

   9.      Read across the 6 th row of the triangle,  [a]  1,  [c]  10,  [e]  5.

  11.      Either 1 B and 2 non-B or 2B and 1 non-B will satisfy, .

  13.      Need to pick 2 kinds, then pick which of the 2 will be 4 of kind, then pick 1 card of the other

            kind.  .

  15.      P(31, 2) = 930.

  17.     

  19.      .

  21.     

            . 

           

  23.     

           

  25.      C(30, 5) = 142,506.

  27.      [a]  C(8, 4) = 70,  [b]  .

  29.      To pick the 8 in favor (or 4 against) is .

 

 

 

 

Chapter 3.4, Chapter Review

   Mastery Quiz

    1.  [a],  2. [b],  3. [a],  4. [a],  5. [b],  6. [a],  7. [b],  8. [b],  9. [c],  10. [c]

 

   Review

   1.      [a]  336,  [b]  720,  [c]  15,  [d]  362,880,  [e]  36.

   3.      [a]  P(20, 3) = 6,840  [b]  C(20, 3) = 1,140.

   5.      .

   7.      .

   9.      Cannot have 1 M and 3 F because there are only 2 F, thus 2 M and 2 F or 3 M and 1 F,

            .

  11.      First select toppings, then crust, then drink, 

  13.      .

  15.      .

  17.     

           

           

  19.      Construct a chart, 5 ways.

  21.     

  23.      Row starts with men or with women, .

  25.      .

  27.     

  29.      .

  31.      [a]  Number of distinguishable arrangements of 12 people is 12!, with pairing of 2 people per room being indistinguishable is .

            [b]  Pick 3 of the 6  rooms for the men, arrange the 6 men into 3 groups of 2, then arrange the 6 women into 3 groups of 2. 

  33.