## C: ANSWERS TO SELECTED PROBLEMS

Chapter 8.1, Maximum Problems and Slack Variables

1. $20 x+100 y+u=1900, x+50 y+v=500,2 x+20 y+w=240$.

3a. $x+y+u=6, y+v=5 . \quad 3 \mathrm{~b} . ~-x-2 y+f=0$.
3c.

| $x$ | $y$ | $u$ | $v$ | $f$ | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 | 6 |
| 0 | 1 | 0 | 1 | 0 | 5 |
| -1 | -2 | 0 | 0 | 1 | 0 |
|  |  |  | $3 e$. | 2 |  |

3d. $\quad 2 \quad 3 x+2 y+u=12$,
5a. $\quad x+y+v=5$.
5b. $-5 x-4 y+f=0$.

$$
4 x+5 y+w=13
$$

5c.

| $x$ | $y$ | $u$ | $v$ | $w$ | $f$ | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 2 | 1 | 0 | 0 | 0 | 12 |
| 1 | 1 | 0 | 1 | 0 | 0 | 5 |
| 4 | 6 | 0 | 0 | 1 | 0 | 13 |
| -5 | -4 | 0 | 0 | 0 | 1 | 0 |
|  |  |  | 5 e. | 3 |  |  |
| $y+z+u=8$, |  |  |  |  |  |  |

5d. 2

$$
3 x-2 y+z+u=8
$$

7a. $\quad-4 x+3 y+2 z+v=4,$.
7b. $2 y-5 z+f=0$.

7c.

| $x$ | $y$ | $z$ | $u$ | $v$ | $w$ | $f$ | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | -2 | 1 | 1 | 0 | 0 | 0 | 8 |
| -4 | 3 | 2 | 0 | 1 | 0 | 0 | 4 |
| 3 | 1 | -6 | 0 | 0 | 1 | 0 | 6 |
| 0 | 2 | -5 | 0 | 0 | 0 | 1 | 0 |
|  |  |  | $7 e$. | 3 |  |  |  |

Chapter 8.2, The Simplex Method
$\begin{array}{lll}\text { 1. } & \operatorname{Max} f=11, x=1, y=5 . & \text { 3. } \\ \text { 5. } \operatorname{Max} f=30, x=2, y=6 . \\ \operatorname{Max} f=90, x=30, y=0 . & \text { 7. } \operatorname{Max} f=79, x=9, y=4 .\end{array}$
5. $\operatorname{Max} f=90, x=30, y=0$.
7. $\operatorname{Max} f=79, x=9, y=4$.
9. $\operatorname{Max} f=\frac{75}{4}, x=0, y=\frac{9}{4}, z=\frac{19}{4}$.
11. Max profit $\$ 90,0 \mathrm{~A}, 0 \mathrm{~B}$, and 3 C .
13. Max income $\$ 20,220$, 16 inexpensive, 30 expensive, and 14 medium.
15. Max income $\$ 82$ million, $\$ 0$ home, $\$ 600$ million car, and $\$ 200$ million securities.

Chapter 8.3, Duality and Minimum Problems

1. $\operatorname{Min} y_{0}=1900 y_{1}+500 y_{2}+240 y_{3}$ $20 y_{1}+y_{2}+2 y_{3} \geq 20$,
$100 y_{1}+50 y_{2}+20 y_{3} \geq 300$,

$$
y_{1}, y_{2}, y_{3} \geq 0
$$

5. Primal solution: $y_{1}=5, y_{2}=7, x_{1}=x_{2}=0, x_{3}=1, y_{0}=53$.
6. Primal solution: $y_{1}=\frac{8}{11}, y_{2}=\frac{2}{11}, y_{3}=x_{1}=x_{2}=0, x_{3}=\frac{13}{11}, y_{0}=\frac{82}{11}$.
7. Minimal cost $\$ 36 \frac{12}{13}$ using $1 \frac{11}{13}$ sacks of soybeans and $1 \frac{11}{13}$ sacks of oats.
8. 4 days A and 2 days B.

## Chapter 8.4, Mixed-Constraint Linear Programs

 No problems in this section.
## Chapter 8.5, Chapter Review

1. $\operatorname{Max} f=43, x=2, y=7$.
2. $\operatorname{Max} f=59, x=11, y=5$.
3. $x_{1}=0, x_{2}=5, x_{3}=1, y_{1}=2, y_{2}=0, y_{0}=10$.
4. $y_{1}=\frac{62}{7}, y_{2}=\frac{60}{7}, x_{1}=0, x_{2}=\frac{10}{7}, x_{3}=0, y_{0}=\frac{428}{7}$.
5. $\operatorname{Min} T=18, x=2, y=4$.
6. Max $\$ 82,500,125 \mathrm{X}, 50 \mathrm{Y}$, and 0 Z
