C: ANSWERS TO SELECTED PROBLEMS

Chapter 8.1, Maximum Problems and Slack Variables

1. 20x + 100y + u = 1900, x + 50y + v = 500, 2x + 20y + w = 240.

3a.
$$x + y + u = 6$$
, $y + v = 5$. 3b. $-x - 2y + f = 0$.

3c.										
		x	у	и	v	f	1			
		1	1	1	0	0	6			
		0	1	0	1	0	5			
		-1	-2	0	0	1	0			
3d.	2 3x + 2y +	-u = 12,			3e.	2	1			
5a.	x + y + v = 5, .				5b. $-5x - 4y + f = 0$.					
	4x + 5y +	w = 13								
5c.	-									
		x	у	и	V	w	f	1		
		3	2	1	0	0	0	12		
		1	1	0	1	0	0	5		
		4	6	0	0	1	0	13		
		-5	-4	0	0	0	1	0		
5d.	2				5e.	3		1		
	3x-2y	+ z + u =	: 8,							
7a.	-4x + 3y + 2z + v = 4,.				7b.	7b. $2y - 5z + f = 0$.				
	3x + y -	6z + w =	6							
7c.										
		х	у	z.	и	v	w	f	1	
		3	-2	1	1	0	0	0	8	
		-4	3	2	0	1	0	0	4	
		3	1	-6	0	0	1	0	6	
		0	2	-5	0	0	0	1	0	
7d.	3				7e.	3		ľ		

Chapter 8.2, The Simplex Method

- Max f = 30, x = 2, y = 6. 1. Max f = 11, x = 1, y = 5.3. 5. Max f = 90, x = 30, y = 0. 7. Max f = 79, x = 9, y = 4. 9. Max $f = \frac{75}{4}$, x = 0, $y = \frac{9}{4}$, $z = \frac{19}{4}$. 11. Max profit \$90, 0 A, 0 B, and 3 C.
- 13. Max income \$20,220, 16 inexpensive, 30 expensive, and 14 medium.

Max income \$82 million, \$0 home, \$600 million car, and \$200 million securities. 15.

2

Chapter 8.3, Duality and Minimum Problems $Min v_0 =$ =1900 v + 500 v + 240 v

1. Min
$$y_0 = 1900 \ y_1 + 500 \ y_2 + 240 \ y_3$$
 3. No solution.
 $20y_1 + y_2 + 2y_3 \ge 20,$
 $100 \ y_1 + 50 \ y_2 + 20y_3 \ge 300,$
 $y_1, \ y_2, \ y_3 \ge 0.$
5. Primal solution: $y_1 = 5, \ y_2 = 7, \ x_1 = x_2 = 0, \ x_3 = 1, \ y_0 = 53.$

- 7.
- Primal solution: $y_1 = \frac{8}{11}$, $y_2 = \frac{2}{11}$, $y_3 = x_1 = x_2 = 0$, $x_3 = \frac{13}{11}$, $y_0 = \frac{82}{11}$. Minimal cost \$36 $\frac{12}{13}$ using $1\frac{11}{13}$ sacks of soybeans and $1\frac{11}{13}$ sacks of oats. 9.
- 11. 4 days A and 2 days B.

Chapter 8.4, Mixed-Constraint Linear Programs No problems in this section.

Chapter 8.5, Chapter Review

- 1. Max f = 43, x = 2, y = 7.
- Max f = 59, x = 11, y = 5. 3.
- 5.
- $x_1 = 0, x_2 = 5, x_3 = 1, y_1 = 2, y_2 = 0, y_0 = 10.$ $y_1 = \frac{62}{7}, y_2 = \frac{60}{7}, x_1 = 0, x_2 = \frac{10}{7}, x_3 = 0, y_0 = \frac{428}{7}.$ Min T = 18, x = 2, y = 4. 7.
- 9.
- Max \$82,500, 125 X, 50 Y, and 0 Z 11.