C: ANSWERS TO SELECTED PROBLEMS

Chapter 3.1 , Trees and Equally Likely Outcomes	
1.	$S=\{H H H, H H T, H T H, T H H, H T T, T H T, T T H, T T T\}$.
3.	$S=\{1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,30,36\}$. Remember, repeated
5. elements are rostered only once in a set.	
7.	$6 \cdot 2=12, S=\{1 H, 1 T, 2 H, 2 T, 3 H, 3 T, 4 H, 4 T, 5 H, 5 T, 6 H, 6 T\}$.
9.	$3 \cdot 2 \cdot 1=6, S=\{A B C, A C B, B A C, B C A, C A B, C B A\}$.
11.	$3 \cdot 2 \cdot 1=6$
13.	5,040 .
15.	$5!=120$.
17.	$[\mathrm{a}] 3,628,800-120=3,628,680 ; \quad[\mathrm{b}] 5!=120 ; \quad[\mathrm{c}] 2,730 ; \quad[\mathrm{d}] 306$.
19.	$4!=24$.
21.	$20 \cdot 19 \cdot 18=6,840$.
23.	Each of the 5 persons will shake hands with 4 other people. $5 \cdot 4=20$. However, this includes a
25.	second handshake for each pair of people, so we divide this number in half. There are 10.
25.	$4 \cdot 3 \cdot 2 \cdot 1=24$.
27.	$1 \cdot 10 \cdot 5=50,000,000$.
29.	$1 \cdot 4 \cdot 3+1 \cdot 4 \cdot 2+1 \cdot 4 \cdot 3+1 \cdot 4 \cdot 2+1 \cdot 4 \cdot 3+1 \cdot 4 \cdot 2=60$.
31.	$2^{10} \cdot 5^{10}=10^{10}$.

Chapter 3.2, Permutations

1. [a] 120, [b] 720, [c] 5, [d] 1.
2. $\quad P(20,3)=6,840$.
3. $\quad P(7,4)=840$.
4. There are 11 letters of which the M, A, and T are each repeated twice, $\frac{11!}{2!\cdot 2!\cdot 2!}=4,989,600$.
5. $\quad 7 \cdot 7 \cdot 7 \cdot 7=7^{4}=2,401$.
6. Fixing one seat at the table converts the problem to 14 seats (1 vacant) in a row, or 13 ! ways.
7. $10 \cdot 10 \cdot 10 \cdot 10 \cdot 1=10,000$.
8. Start with ($8-1$)! ways to place 8 keys on a ring (circular permutations) then multiply by 2 for each key (each key could face up or down). Therefore, $(8-1)!\cdot 2^{8}=1,290,240$.
9. $10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10=1,000,000$.
10. $P(6,4)=360$.
11. $26 \cdot 25 \cdot 4 \cdot 4=10,400$.
12. $4 \cdot 8 \cdot 7 \cdot 3 \cdot 6 \cdot 5 \cdot 2 \cdot 4 \cdot 3 \cdot 1 \cdot 2 \cdot 1=967,680$.
13. Start with the total number of ways with no restrictions, $5 \cdot 4 \cdot 3$, then subtract the number of ways with all evens, 0 (there is only 2 even elements); and subtract the number of ways for all odds, $3 \cdot 2 \cdot 1$. That is, $60-0-6=54$.
14. 8 games are required.
15. The row could begin with a boy or a girl, 2 choices. Then, $P(5,5)$ ways to seat the boys and $P(5,5)$ ways to seat the girls. $2 \cdot P(5,5) \cdot P(5,5)=2 \cdot 120 \cdot 120=28,800$.
16. $\frac{15!}{(3!)^{5}}=168,168,000$.

Chapter 3.3, Combinations

1. [a] 1, [b] 210, [c] 1, [d] 6.
2. $C(20,3)=1,140$.
3. $\quad C(52,5)=2,598,960$.
4. $\quad C(3,1) \cdot C(1,1) \cdot C(2,1)=6$.
5. Read across the 6 th row of the triangle, [a] 1, [c] 10, [e] 5.
6. Either 1 B and 2 non-B or 2B and 1 non-B will satisfy, $C(2,1) \cdot C(9,2)+C(2,2) \cdot C(9,1)=81$.
7. Need to pick 2 kinds, then pick which of the 2 will be 4 of kind, then pick 1 card of the other kind. $C(13,2) \cdot C(2,1) \cdot C(4,4) \cdot C(4,1)=624$.
8. $P(31,2)=930$.
9. $\quad 2^{5}=32$.
10. $\quad C(20,2) \cdot C(15,2)=190 \cdot 105=19,950$.
11. $[\mathrm{a}] C(20,3)=1,140$.
[b] $(2 \mathrm{~F}$ and 1 M$)$ or $(3 \mathrm{~F}$ and 0 M$): C(10,2) \cdot C(10,1)+C(10,3) \cdot C(10,0)=45 \cdot 10+120 \cdot 1=570$.
[c] Find the complement to part b, $1,140-570=570$.
12. [a] Pick a suit, then pick 5 cards in suit, $C(4,1) \cdot C(13,5)=5,148$.
[b] Pick 3 clubs, then pick 2 non- clubs, $\quad C(13,3) \cdot C(39,2)=211,926$.
13. $\quad C(30,5)=142,506$.
14. $[\mathrm{a}] ~ C(8,4)=70$, [b] $C(2,2) \cdot C(8,2)=28$.
15. To pick the 8 in favor (or 4 against) is $C(12,8)=C(12,4)=495$.

Chapter 3.4, Chapter Review

Mastery Quiz

1. [a], 2. [b], 3. [a], 4. [a], 5. [b], 6. [a], 7. [b], 8. [b], 9. [c], 10. [c]

Review

1. [a] 336, [b] 720, [c] 15, [d] 362,880, [e] 36.
2. $[\mathrm{a}] P(20,3)=6,840$ [b] $C(20,3)=1,140$.
3. $99 \cdot 26 \cdot 10 \cdot 10 \cdot 10 \cdot 10=25,740,000$.
4. $\frac{40!}{6!\cdot 6!\cdot 8!\cdot 8!\cdot 12!} \approx 2.02 \times 10^{24}$.
5. Cannot have 1 M and 3 F because there are only 2 F , thus 2 M and 2 F or 3 M and 1 F ,
$C(6,2) \cdot C(2,2)+C(6,3) \cdot C(2,1)=55$.
6. First select toppings, then crust, then drink, $C(12,3) \cdot 2 \cdot C(6,1)=2,640$.
7. $5 \cdot 4 \cdot 9 \cdot 9 \cdot 9 \cdot 9=131,220$.
8. $\frac{11!}{4!\cdot 4!\cdot 2!}=34,650$.
9. $[\mathrm{a}] C(12,3) \cdot C(10,3)=26,400$.
[b] Use the complement of 0 boys and 6 girls: $\quad C(22,6)-C(12,0) \cdot C(10,6)=74,403$.
[c] Select 6 from 22 in combination, then select 2 from these 6 in permutation: $C(22,6) \cdot P(6,2)$.
10. Construct a chart, 5 ways.
11. $(8-1)!=5,040$.
12. Row starts with men or with women, $P(4,4) \cdot P(4,4)+P(4,4) \cdot P(4,4)=1,152$.
13. $\quad P(10,4) \cdot P(8,2)=282,240$.
14. $\frac{n \cdot(n-1)}{2}=105$, where $n=15$.
15. $C(31,3) \cdot 4 \cdot 2=35,960$.
16. [a] Number of distinguishable arrangements of 12 people is 12 !, with pairing of 2 people per room being indistinguishable is $\frac{12!}{2!\cdot 2!\cdot 2!\cdot 2!\cdot 2!\cdot 2!}=7,484,400$.
[b] Pick 3 of the 6 rooms for the men, arrange the 6 men into 3 groups of 2 , then arrange the 6 women into 3 groups of 2. $P(6,3) \cdot \frac{6!}{2!\cdot 2!\cdot 2!} \cdot \frac{6!}{2!\cdot 2!\cdot 2!}=972,000$.
17. $2 \cdot P(4,4)=48$.
