Chemistry C101

Examination 2

Directions:

- Both your **name** and **identification number** must be included and balloons properly darkened. Any 1. errors may result in a point penalty.
- 2. Choose the **best** answer in each of the following. Using a #2 pencil, fill in the corresponding balloon on your scoring sheet.
- 3. Print your name and your recitation time and day on the top of this exam booklet. YOU MUST TURN IN THIS BOOKLET WITH YOUR ANSWER SHEET!

Electronegativities								
Η	2.1	Cl	3.0					
С	2.5	Κ	0.8					
Ν	3.0	Ca	1.0					
Ο	3.5	Rb	0.8					
F	4.0	Ι	2.5					

Potentially Useful Information

Avogadro's number: $N_A = 6.02 \times 10^{23}$

s-bl	ock	d-block transition metals									p-block							
1			DEPARTMENT OF CHEMISTRY • INDIANA UNIVERSITY -PURDUE UNIVERSITY INDIANAPOLIS												18			
1A			88															
	2											13	14	15	16	17	He	
1.0079	2A											3A	4A	5A	6A	7A	4.0026	
3	4 Do											5 D	6	7 NI	8	9	10 No	
LI 6.941	9.0122											D 10.811	12.0107	14.0067	15.9994	F 18.9984	20.1797	
11	12	2	4	5	6	7	•	0	10	11	12	13	14	15	16	17	18	
1Na 22.990	1VIg	3 3B	4B	5 5B	6B	7B	0	8B	10	1B	2B	AI 26.9815	SI 28.0855	P 30.9738	S 32.066	CI 35.4527	Ar 39.948	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
K	Ca	Sc	Ti		Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
39.098	^{40.078}	^{44.956}	47.887	41	42	43	44	45	46	47	48	49	50	51	52	^{79.904}	54	
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	T	Xe	
85.468	87.62	88.906	91.224	92.906	95.94	[98]	101.07	102.906	106.42	107.868	112.411	114.818	118.710	121.760 02	127.60	126.904 95	131.29	
Cs	Ba	La	Hf	Ta	Ŵ	Re	Os	l Ir	Pt	Au	Ha	TI	Pb	Bi	Po	At	Rn	
132.905	137.327	138.906	178.49	180.948	183.84	186.207	190.23	192.217	195.078	196.967	200.59	204.383 207.2 208.980 [208.98] [209.99] [222.0]						
87 Fr	88 Ra	89 Δc	104 Rf	105 Dh	106 Sci	107 Bh	108 Hs	109 N/I+	110 11un	111 1 h n r	112 11ub	Visit our websitebttp://www.chem.jupui.edu						
[223.0]	[226.0]	[227.0]	[261.1]	[262.1]	[263.1]	[264]	[265.1]	[268]	[269]	[272]	[277]			nonup.//		ion nape		
f block transition motals																		
For admission information for admission for admissin for admission for admission for admission for admissi																		
Lanthanide		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu o	hemistry@ r call:	iupui.edu,	
140.116 140.908 144.24 [144.9] 150.36 151.964 157.25 158.93 162.50 164.930 167.26 168.934 173.04 174.967 317.274.6872								372										
Acti	nide	90 Th	91 Pa	92]	93 Nn	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Fs	100 Fm	101 Md	102 No	103 Ir °	1999, Departme	ent of Chemistry,	
ser	ies	232.038 23	31.036 2	38.029 [237.0]	[244.1]	[243.1]	[247.1]	[247.1]	[251.1]	[252.1]	[257.1] [7.1] [258.1] [259.1] [262] Indiana University -Purdue Universit Indianapolis				-Purdue University	

Each question is worth 4 points. Choose the BEST answer.

- 1. Bromine forms the stable monatomic ion:
 - a. Br³⁻
 - b. Br²⁻
 - c. Br-
 - d. Br+
 - e. Br²⁺
- 2. The ionic compound formed from Al^{3+} and $Cr_2O_7^{2-}$ (dichromate) ions is
 - a. $AlCr_2O_7$
 - b. $Al(Cr_2O_7)_2$
 - c. $Al_2Cr_2O_7$
 - d. $Al_2(Cr_2O_7)_3$
 - e. $Al_3(Cr_2O_7)_2$
- 3. When comparing single, double and triple bonds between carbon and nitrogen, the carbon-nitrogen single bond (C—N) is
 - a. strongest and shortest.
 - b. strongest and longest.
 - c. weakest and shortest.
 - d. weakest and longest.
 - e. intermediate in both strength and length.
- 4. Which of the following is *always soluble* in water regardless of its associated anion?
 - a. Sr^{2+}
 - b. Rb⁺
 - c. Ba²⁺
 - d. Fe²⁺
 - e. Fe³⁺
- 5. Iron (III) oxide has the formula
 - a. Fe₂O₃
 - b. Fe₃O₂
 - c. (FeO₂)₃
 - d. FeO₃
 - e. FeO
- 6. The phosphate ion is
 - a. P³⁻
 - b. PO_3^{2-}
 - c. PO_4^{-}
 - d. PO4²⁻
 - e. PO₄³⁻

- 7. Potassium ion, K^+ , is isoelectronic with
 - a. Ca²⁺
 - b. Ti⁴⁺
 - c. S²⁻
 - d. Cl-

e. **all of the above**

- 8. Which of the following is the most electronegative?
 - a. Sr
 - b. S
 - c. Si
 - d. Sn
 - e. Se
- 9. Neutral metal atoms tend to
 - a. lose electrons to form cations.
 - b. lose electrons to form anions.
 - c. gain electrons to form cations.
 - d. gain electrons to form anions.
 - e. gain protons to form cations.
- 10. Which of the following behaves as an acid when dissolved in water?
 - a. CH₄
 - b. LiOH
 - c. CH_3CH_2OH
 - d. $H_2 SO_4$
 - e. NH₄OH
- 11. In a diatomic molecule, the equilibrium bond distance corresponds to
 - a. that of a noble gas.
 - b. that of a single bond.
 - c. that of a double bond.
 - d. the highest energy.
 - e. the lowest energy.
- 12. The total number of valence electrons in the sulfite ion, SO_3^{2-} is
 - a. 2
 - b. 8
 - c. 24
 - d. 26
 - e. 40
- 13. In covalent compounds, carbon generally forms _____ bonds, while oxygen generally forms _____ bonds and has _____ lone pair(s).
 - a. 4, 2, 2
 - b. 4, 3, 1
 - c. 4, 3, 2
 - d. 2, 3, 1
 - e. 2, 2, 2

- 14. Dichloromethane, CH_2Cl_2 , is a molecule that could reasonably be represented by twisting together two balloons. What is the approximate Cl–C–Cl angle?
 - a. 90°
 - b. 109°
 - c. 120°
 - d. 150°
 - e. 180°
- 15. The energy released to add electrons to a neutral atom and create an ion, e.g., F becoming F^- , is called the
 - a. ionization energy.
 - b. resonance energy.
 - c. electron affinity.
 - d. bonding energy.
 - e. kinetic energy.
- 16. The Lewis structure of the formate ion, HCO_2^- , has carbon as the central atom, with a bond to hydrogen, a single bond to one oxygen and a double bond to the other oxygen. What is the shape of the formate ion?
 - a. linear
 - b. trigonal bipyramidal
 - c. octahedral
 - d. tetrahedral
 - e. trigonal planar
- 17. Which of the following contains a *triple* bond?
 - a. ammonia
 - b. cyanide ion
 - c. diatomic bromine
 - d. oxygen gas
 - e. sulfur trioxide
- 18. Chlorine reacts with a metal "M" to produce an ionic compound with formula MCl₂. Which one of the following elements could be the mystery element M?
 - a. Sr
 - b. Rb
 - c. Al
 - d. Si
 - e. Li
- 19. A neutral atom in which of the following groups would have 7 valence electrons?
 - a. group 6A
 - b. group 7A
 - c. group 8A
 - d. alkali metals
 - e. alkaline earth metals

- 20. Which of the following will react in a *neutralization* reaction with sodium hydroxide to produce sodium nitrate?
 - a. sulfuric acid
 - b. nitric acid
 - c. hydrochloric acid
 - d. sodium sulfate
 - e. barium nitrate
- 21. Suppose a molecule has an AB_3 structure (with A central), and the B's consist of two atoms and one lone pair. What is the shape of the molecule and what is the B–A–B angle?
 - a. bent, 90°
 - b. bent, 109°
 - c. bent, 120°
 - d. linear, 180°
 - e. trigonal planar, 120°
- 22. Which of the following is best described as a covalently bonded molecule?
 - a. K₃N
 - b. KBr
 - c. CaBr₂
 - d. CoBr₂
 - e. CBr₄
- 23. Which of the following electron configurations is correct for an *excited* fluoride ion?
 - a. [Ne]
 - b. [Ne]3s¹
 - c. $1s^2 2s^2 2p^6$
 - d. $1s^2 2s^2 2p^5 3s^1$
 - e. $1s^22s^22p^53s^23p^1$
- 24. When a valid Lewis structure can be drawn more than one way for an ion or molecule, as in the case of sulfur dioxide, the true structure is
 - a. the structure where $\mu = 0$.
 - b. the structure that has a net dipole.
 - c. determined by application of the octet rule.
 - d. an average of the possible resonance structures.
 - e. the structure with the least number of lone pairs on the central atom.
- 25. Which of the following molecules has $\mu = 0$?
 - a. PCl₃
 - b. NH₃
 - c. BH₃
 - d. *all have zero dipole moments*
 - e. none have zero dipole moments

- 26. Beryllium chloride doesn't have any lone pairs on the central atom and is an "electron deficient" compound. The octet rule is satisfied on each chlorine atom and the molecule doesn't contain any multiple bonds. What is the shape of BeCl₂?
 - a. bent
 - b. linear
 - trigonal planar C.
 - d. trigonal pyramidal
 - none of the above e.
- 27. The formula weight of calcium bisulfate, $Ca(HSO_4)_2$ is about
 - 69 g/mol. a.
 - b. 137 g/mol.
 - c. 201 g/mol.
 - 234 g/mol. d.
 - 274 g/mol. e.
- 28. Balance the following chemical equation: $CH_3CH_2CH_2CH_3 + O_2 = CO_2 + H_2O$ When correctly balanced, the coefficients of carbon dioxide and H₂O are respectively:
 - 4 and 5 a.
 - b. 8 and 5
 - 8 and 10 c.
 - d. 13/2 and 5
 - 13 and 10 e.
- 29. Aluminum metal reacts with diatomic fluorine gas to form a trigonal planar compound of aluminum and fluorine (24 total valence electrons). In the balanced chemical equation for this reaction, the sum of all of the coefficients is:
 - 3 a.
 - 4 b.
 - 5 C. 6
 - d.
 - 7 e.
- 30. 0.250 mol of elemental bromine, Br₂, has a mass of approximately
 - 0.250 g. a.
 - b. 8.75 g.
 - 20.0 g. C.
 - d. 40.0 g.
 - 79.9 g. e.
- How many *atoms* are in 4.2×10^{-5} moles NH₃ gas? 31.
 - 6.0×10^{23} a.
 - 1.2×10^{23} b.
 - 1.0×10^{20} c.
 - d. 2.4×10^{24}
 - 1.0×10^{-5} e.

```
KNO_3(aq) + PbCrO_4(s)
               K_2CrO_4(aq) + Pb(NO_3)_2(aq)
       When correctly balanced, the coefficient of lead nitrate is
                1
       a.
       b.
                2
                3
       c.
       d.
                4
                none of the above
       e.
33.
       Identify the spectator ion or ions in the reaction shown here.
                                           2 NaBr (aq) + I_2(s)
                2 NaI (aq) + Br<sub>2</sub> (l)
               Na<sup>+</sup>
       a.
       b.
               I-
               Br⁻
       c.
       d.
               Na<sup>+</sup> and Br<sup>-</sup>
               Na⁺ and I<sup>-</sup>
       e.
34.
       What is the oxidation number of nitrogen in lithium nitrate?
```

- a. +1 b. -1
- c. +3
- d. -3
- e. +5

35. In the reaction shown, the change in oxidation number for iron (from left to right) is

2 Fe (s) + 3 Cl₂ (g) 2 FeCl₃ (s)

- a. -2 to +2
- b. 0 to +3
- c. 0 to +6
- d. +2 to +6
- e. The oxidation number of iron does not change in this reaction.
- 36. How many moles of FeCl_3 would be produced if 0.8 moles of iron metal and 0.9 moles of chlorine gas were combined? *Hint: Something might be limiting!*

2 Fe (s) + 3 Cl₂ (g) 2 FeCl₃ (s)

- a. 1 mol FeCl₃
- b. 2 mol FeCl₃
- c. 0.6 mol FeCl₃
- d. 0.8 mol FeCl₃
- e. 0.1 mol FeCl₃

Use the balanced reaction below for the next three problems, 37 - 39:

 $2AuCl_3 + 3Sn = 3SnCl_2 + 2Au$

- 37. How many moles of tin (II) chloride are produced when 3 moles of gold (III) chloride react with plenty of tin metal present?
 - a. 2.0 mol
 - b. 3.0 mol
 - c. 4.5 mol
 - d. 6.0 mol
 - e. 9.0 mol
- 38. If 1.2 mol of tin metal and excess gold (III) chloride are used, how many moles of gold metal are produced?
 - a. 0.67 mol
 - b. 0.80 mol
 - c. 1.2 mol
 - d. 2.0 mol
 - e. 2.4 mol
- 39. If 60 g of tin metal are used with excess gold (III) chloride, how many moles of tin (II) chloride are produced?
 - a. 0.5 mol
 - b. 0.75 mol
 - c. 0.83 mol
 - d. 1.0 mol
 - e. 1.2 mol
- 40. What will happen when aqueous solutions of silver nitrate, sodium sulfate and barium chloride are combined?
 - a. A precipitate of $BaSO_4$ will form; all other ions will remain in solution.
 - b. A precipitate of AgCl will form; all other ions will remain in solution.
 - c. A precipitate of $AgSO_4$ will form; all other ions will remain in solution.
 - d. BaSO₄ and AgCl will both precipitate from the solution.
 - e. No precipitate will form, i.e., all ions will remain in solution.