Exam 2 form A C101 Fall 2002

Directions:

Name		
Recit.	Day	
Recit.	Time	
Recit.	Instructor	

1. Both your **name** and **identification number** must be included and balloons properly darkened on the scan form. Any errors may result in a point penalty. Only the scan form will be graded.

2. Choose the **best** answer in each of the following questions. Using a #2 pencil, fill in the corresponding balloon on your scan form.

Electronegativities								
Н	2.1	Cl	3.0					
С	2.5	Κ	0.8					
Ν	3.0	Са	1.0					
Ο	3.5	Rb	0.8					
F	4.0	Ι	2.5					

Potentially Useful Information

Avogadro's number: $N_{\rm A} = 6.02\,\times\,10^{23}$

s-bl	ock		d-block transition metals										p-block						
1			Department of Chemistry • Indiana University -Purdue Universit										y Indianapolis 18						
1A			48												8A				
1 H 1.0079	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.0026		
3 Li 6.941	4 Be 9.0122											5 B 10.811	6 C 12.0107	7 N 14.0067	8 0 15.9994	9 F 18.9984	10 Ne 20.1797		
11 Na 22.990	12 Mg 24.305	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 8B	10	11 1B	12 2B	13 Al 26.9815	14 Si 28.0855	15 P 30.9738	16 S 32.066	17 Cl 35.4527	18 Ar 39.948		
19 K 39.098	20 Ca 40.078	21 SC 44.956	22 Ti 47.867	23 V 50.9415	24 Cr 51.996	25 Mr 54.938	1 26 Fe 55.845	27 CO 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.9216	34 Se _{78.96}	35 Br ^{79.904}	36 Kr 83.80		
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.94	43 Tc [98]	44 Ru 101.07	45 Rh 102.90	46 Pd 106.42	47 Ag 107.86	48 Cd 8 112.41	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 126.904	54 Xe 131.29		
55 CS 132.905	56 Ba 137.32	57 La 7 138.906	72 Hf 178.49	73 Ta 180.948	74 W 183.84	75 Re 186.20	7 190.23	77 Ir 3 192.21	78 Pt 7 195.07	79 Au 196.96	80 HC 7 200.5	81 TI 9 204.383	82 Pb 207.2	83 Bi 208.980	84 Po [208.98]	85 At [209.99]	86 Rn [222.0]		
87 88 89 104 105 106 107 108 109 110 111 112 Fr Ra Acc Rf Db Sg Bh Hs Nt Uun <th< td=""></th<>																			
f-block transition metals For admission informatic																			
Lanthanide series 140.116 140.908 144.24 [144.9] 150.36 151.964 157.25 158.93 162.50 164.930 167.26 168.934 173.04 174.967 send e-mail to chemistry@iu or call: 317.274.687								to: Piupui.edu, 872											
Actii seri	nide ies	90 91 92 93 94 95 96 97 98 99 100 101 102 103 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr ° 1999, Department of Chem 232.038 231.036 238.029 [237.0] [241.1] [243.1] [247.1] [247.1] [251.1] [252.1] [257.1] [258.1] [259.1] [262] ndrarapos								ent of Chemistry, -Purdue University									

Each question is worth 4 points. Choose the BEST answer.

- 1. The ion, NH_4^+ , is called
 - a. ammonia ion.
 - b. ammonium ion.
 - c. hydrammonium ion.
 - d. hydronitride ion.
 - e. nitride ion.
- 2. Based on its position in the periodic table, which of the following is the *least* electronegative element?
 - a. Zn
 - b. B
 - c. O
 - d. Al
 - e. Cl
- 3. Which of the following anions is *always soluble* in water regardless of its associated cation (positive ion)?
 - a. NO_3^{-}
 - b. S²⁻
 - c. SO_4^{2-}
 - d. OH-
 - e. Cl-
- 4. The compound potassium sulfate has the formula
 - a. KSO₃
 - b. K₃SO₃
 - c. $K(SO_4)_2$
 - d. KSO₄
 - $e. \qquad K_2 SO_4$
- 5. Chromium (II) nitrate has the formula
 - a. Cr_2NO_3
 - b. $\operatorname{Cr}_2(\operatorname{NO}_3)_2$
 - c. $Cr(NO_3)_2$
 - d. CrNO₃

e.
$$\operatorname{Cr}_3(\operatorname{NO}_3)_2$$

- 6. Sulfuric acid has the formula
 - a. HSO₃
 - b. HSO₄
 - c. H_2SO_2
 - d. H₂SO₃
 - e. H₂SO₄

- 7. BaCl₂ can be formed in a *neutralization* reaction solely from which of the following pairs of compounds?
 - a. $Ba(NO_3)_2$ and $Ba(OH)_2$
 - b. $Ba(NO_3)_2$ and $CaCl_2$
 - c. Ba(OH)₂ and HCl
 - d. $Ba(NO_3)_2$ and HCl
 - e. NH₄Cl and NH₄OH
- 8. Which of the following molecules has *exactly* one lone pair of electrons?
 - a. NH₃
 - b. Cl₂
 - c. CO₂
 - d. BF₃
 - e. CS₂
- 9. Neutral nonmetal atoms tend to
 - a. lose electrons to form cations.
 - b. lose electrons to form anions.
 - c. gain electrons to form cations.
 - d. gain electrons to form anions.
 - e. gain protons to form cations.
- 10. The energy required to remove electrons from a neutral atom and create an ion, e.g., Na becoming Na^+ , is called the
 - a. ionization energy.
 - b. resonance energy.
 - c. electron affinity.
 - d. bonding energy.
 - e. kinetic energy.
- 11. Carbon dioxide contains two double bonds, each from carbon to an oxygen atom. The shape of carbon dioxide is best described by the term
 - a. bent.
 - b. linear.
 - c. T-shaped.
 - d. tetrahedral.
 - e. trigonal planar.
- 12. The ionic compound formed from Ca^{2+} and PO_4^{3-} ions has the formula
 - a. CaPO₄
 - b. $Ca(PO_4)_2$
 - c. $Ca_2(PO_4)_2$
 - d. $Ca_2(PO_4)_3$
 - e. $Ca_3(PO_4)_2$

13. BF_3 is a trigonal planar molecule. What is the F–B–F angle?

- a. 90°
- b. 105°
- c. 109°
- d. 120°
- e. 180°
- 14. How many total valence electrons are involved in the correctly-drawn Lewis structure of the phosphate ion?
 - a. 18
 - b. 24
 - c. 29
 - d. 32
 - e. 36
- 15. Which of the following is best described as a covalently-bonded molecule?
 - a. $CaCl_2$
 - b. NaCl
 - c. NaF
 - d. Cs_2O
 - e. CS₂
- 16. In ethanol, CH_3CH_2OH , how many bonds connect to oxygen and how many lone pairs of electrons reside on the oxygen?
 - a. One single bond and two lone pairs
 - b. Two single bonds and no lone pairs
 - c. Two single bonds and one lone pair
 - d. Two single bonds and two lone pairs
 - e. Two double bonds and no lone pairs
- 17. Given the molecule below,

$$\begin{array}{c} H-C=C-NH_2\\ I & I\\ H & Br \end{array}$$

which of the following angles is about 120°? (Caution: Lone pairs can be important!)

- а. Н–С–Н
- b. C–N–H
- c. H–N–H
- d. **b and c, but not a**
- e. **a, b, and c**
- 18. Which of the following molecules likely has **no** dipole moment $(\mu=0)$?
 - a. CO₂
 - b. CS_2
 - c. CF₄
 - d. BF₃
 - e. All have zero dipole moments.

19. How many moles of SO_3 are in a 24 gram sample of SO_3 ?

- a. 0.30
- b. 0.60
- c. 1.0
- d. 2.0
- e. 3.3

20. One mole of water (H_2O) and one mole of carbon dioxide (CO_2)

- a. have the same mass in grams.
- b. contain the same number of oxygen atoms.
- c. contain the same mass of oxygen atoms.
- d. contain the same number of molecules.
- e. none of the above.
- 21. In a graph of potential energy versus internuclear distance (bond length) for a diatomic molecule, the energy is
 - a. lowest when separation of the atoms is equal to the equilibrium bond length.
 - b. highest when separation of the atoms is equal to the equilibrium bond length.
 - c. lowest when the atoms are too close together.
 - d. lowest when the atoms are too far apart.
 - e. highest when the atoms are too far apart.
- 22. Potassium reacts with element X to produce an ionic compound having the formula K_2X . Which one of the following elements could be identified as element X based on knowledge of the usual charges of monatomic ions?
 - a. Ga
 - b. N
 - c. Br
 - d. S
 - e. C
- 23. Which one of the following ions has a –1 charge?
 - a. oxide
 - b. carbonate
 - c. phosphate
 - d. nitride
 - e. nitrate
- 24. Which one of the following ions *is not* isoelectronic with Kr?
 - a. Sr^{2+}
 - b. Br-
 - c. Rb⁺
 - d. As³⁺
 - e. Se²⁻

25. The stable ions formed by calcium and chlorine are:

a. Ca^+ and Cl^-

b. Ca^{2+} and Cl^{-}

- c. Ca^{3+} and Cl^{2-}
- d. $Ca^{-}and Cl^{+}$
- e. Ca^{2-} and Cl^{2+}

26. Balance the chemical equation for the combustion of propane.

 $CH_{3}CH_{2}CH_{3} + O_{2} CO_{2} + H_{2}O$

When correctly balanced, the coefficients of propane and carbon dioxide are respectively

a. 1 and 2

- b. 1 and 3
- c. 2 and 5/2
- d. 2 and 4
- e. 2 and 9/2
- 27. The following reaction occurs in an automobile catalytic converter. What is the coefficient on ammonia when the following equation is correctly balanced with integer coefficients? *(Hint: You might want to start with hydrogen and do nitrogen last.)*

 - c. 3 d. 4

5

e.

a.

b.

28. Which are spectator ions in the redox reaction shown here?

Fe (s) + CuCl₂ (aq) Cu (s) + FeCl₂ (aq)

- a. Fe and Cu only
- b. Fe^{2+} and Cu^{2+} only
- c. Cu^{2+} and Cl^{-} only
- d. Fe^{2+} and Cl^{-} only
- $e. \qquad Cl^{\scriptscriptstyle -} \ only$
- 29. Suppose a molecule has an AB_3 structure (with A central), and the B's consist of two atoms and one lone pair. What is the shape of the molecule and what is the B–A–B angle?
 - a. bent, 90°
 - b. bent, 109°
 - c. bent, 120°
 - d. linear, 180°
 - e. trigonal planar, 120°

Refer to the balanced chemical reaction shown below for questions 30 - 34.

6 HCl (aq) + 2 Al (s) 2 AlCl₃ (aq) + 3 H₂ (g)

- 30. What best describes this reaction?
 - a. It is a neutralization reaction.
 - b. It is a precipitation reaction.
 - c. It is an oxidation-reduction reaction.
 - d. It is a net ionic reaction.
 - e. It is an example of the combustion of albumin.
- 31. How many moles of hydrogen gas, H_2 , will be formed from reaction of 1 mole of aluminum metal with excess HCl?
 - a. 1 mole
 - b. 1.5 moles
 - c. 2 moles
 - d. 2.5 moles
 - e. 3 moles
- 32. About how many moles of aluminum chloride would be formed from complete reaction of 54 grams of aluminum metal?
 - a. 27 moles
 - b. 54 moles
 - c. 1.0 moles
 - d. 2.0 moles
 - e. 73 moles
- 33. If 2.7 grams of aluminum metal reacts completely with excess HCl, how many grams of hydrogen gas are produced?
 - a. 2.7 g H₂
 - b. 4.1 g H₂
 - c. 0.30 g H₂
 - d. 0.13 g H₂
 - e. 2.0 g H₂
- 34. How many moles of aluminum chloride would be produced if 0.6 moles of HCl and 0.4 moles of aluminum metal were combined? (*Hint: Something might be limiting!*)
 - a. 2 mol AlCl_3
 - b. 1 mol AlCl₃
 - c. 0.6 mol AlCl₃
 - d. 0.4 mol AlCl₃
 - e. 0.2 mol AlCl_3

35. In the reaction shown, the change in oxidation number for vanadium (from left to right) is

 $V_2O_5 + 2H_2 V_2O_3 + 2H_2O_3$

a. +2 to -2

- b. +10 to +6
- c. +5 to +3
- d. -5 to -3
- e. none of the above
- 36. What is the oxidation number of sulfur in the SO_3^{2-} ion?
 - a. +3
 - b. +4
 - c. +8
 - d. -1
 - e. -2

37. The combination of ions most likely to produce a precipitate is

- a. Li^+ and phosphate ion
- b. Pb^{2+} and nitrate ion
- c. copper (II) ion and Cl^{-}
- d. ammonium ion and Br^{-}
- e. iron (III) and CO_3^{2-}
- 38. What is the oxygen-phosphorus-oxygen angle in the phosphate ion? *(Hint: No lone pairs on phosphorus.)*
 - a. 90°
 - b. 109°
 - c. 120°
 - d. 150°
 - e. 180°
- 39. How many molecules of water are in 0.20 moles of water?
 - a. 1.2×10^{23}
 - b. 3.0×10^{22}
 - c. 4.8×10^{25}
 - d. 6.0×10^{23}
 - e. 7.5×10^{21}
- 40. Describe the bonding in sodium nitrate, $NaNO_3$.
 - a. The compound is ionic and contains no significant covalent bonding.
 - b. The compound is ionic, but contains a nitrate ion with internal covalent bonds.
 - c. The compound contains two ions covalently bonded together.
 - d. Sodium nitrate is wholly covalently bonded.
 - e. Sodium nitrate is wholly ionically bonded.