Examination 1

Directions:

1. Both your name and identification number must be included and balloons properly darkened. Any errors may result in a point penalty.
2. Choose the best answer in each of the following. Using a \#2 pencil, fill in the corresponding balloon on your scoring sheet.

	Potentially Useful Information
$\mathrm{q}=\mathrm{mC} \Delta \mathrm{T}$	${ }^{\circ} \mathrm{C}=\frac{5}{9} \times\left({ }^{\circ} \mathrm{F}-32^{\circ} \mathrm{F}\right)$
1 mile $\equiv 5280 \mathrm{ft}$	${ }^{\circ} \mathrm{C}=\mathrm{K}-273$
$1 \mathrm{inch} \equiv 2.54 \mathrm{~cm}$	$1 \mathrm{amu}=1.6606 \times 10^{-24} \mathrm{~g}$
$1 \mathrm{~mL} \equiv 1 \mathrm{~cm}^{3}$	mass of proton: $1.6726 \times 10^{-24} \mathrm{~g}$
$\mathrm{c}=3.000 \times 10^{8} \mathrm{~m} / \mathrm{sec}$	mass of electron: $9.1094 \times 10^{-28} \mathrm{~g}$
$1 \mathrm{cal}=4.184 \mathrm{~J}$	mass of neutron: $1.6749 \times 10^{-24} \mathrm{~g}$

The symbol " \equiv " means "identical to", that is, with infinite precision (usually because it's a definition).

	f-block transition metals														For admission informatic
Lanthanide series	$\left[\begin{array}{c} 58 \\ \text { Ce } \\ 140.116 \end{array}\right.$	$\begin{gathered} 59 \\ \mathrm{Pr} \\ 140.908 \end{gathered}$	$\left[\begin{array}{c} 60 \\ \mathrm{Nd} \\ 144.24 \end{array}\right.$	$\left[\begin{array}{c} 61 \\ \mathrm{Pm} \\ {[144.9]} \end{array}\right.$	$\begin{array}{\|c\|} \hline 62 \\ S_{150.36} \end{array}$	$\begin{gathered} 63 \\ \text { Eu } \\ \text { E51.964 } \end{gathered}$	$\begin{array}{\|c\|} \hline 64 \\ \text { Gd } \\ 157.25 \end{array}$	$\underset{155}{65}$	$\left[\begin{array}{c} 66 \\ D_{122.50} \end{array}\right]$	$\left[\begin{array}{c} 67 \\ \mathrm{HO}_{164930} \end{array}\right]$	$\stackrel{\text { Er }}{\substack{667.26 \\ E r}}$	$\begin{gathered} 69 \\ \mathrm{Tm}_{168934} \end{gathered}$	$\begin{gathered} Y \mathrm{Yb} \\ 173.04 \end{gathered}$	71 Lu 174.967	send e-mail to: chemistry@iupui.edu, or call: 317.274.6872
$\begin{aligned} & \text { Actinide } \\ & \text { serie } \end{aligned}$	$\begin{gathered} 90 \\ \text { Th } \\ 232.038 \end{gathered}$	91 Pa 1.036	U^{2}	Np N237.0]	94 Pu $[244.1]$	Am $\begin{gathered}95 \\ {[243.1]}\end{gathered}$	$\begin{gathered} 96 \\ \mathrm{C}_{[247.1]} \end{gathered}$	$\begin{array}{\|} 97 \\ \mathrm{BK} \\ 124711 \end{array}$	$\stackrel{98}{\text { Cf }}$	99 ES $[125.1]$	100 Fm $[257.1]$	101 $M 1$ $[258.1]$	102 No $[259.1]$	$\stackrel{103}{\stackrel{1}{2} \mathrm{~L} 26}$	© 1999, Depatment of Chemistry, IndianaUnivesity -PurdueUniversity Indianapolis

Each question is worth 4 points. Choose the BEST answer.

1. Gold, silver and lead are represented by the symbols:
a. $\mathrm{Au}, \mathrm{Si}, \mathrm{Hg}$
b. $\mathrm{Ag}, \mathrm{S}, \mathrm{Pb}$
c. $\mathrm{Au}, \mathrm{Sr}, \mathrm{La}$
d. $\mathrm{Au}, \mathrm{Ag}, \mathrm{Pb}$
e. none of the above
2. Which symbol represents a nonmetal?
a. $\quad \mathrm{Ni}$
b. Cl
c. $\quad \mathrm{Mn}$
d. Si
e. Sr
3. The atomic weight listed for an element on the periodic table is
a. the weight of the first isotope discovered.
b. the weight of the most stable isotope.
c. an average of the weights of all naturally-occurring isotopes.
d. the weight of the heaviest isotope known.
e. the sum of the weights of all stable isotopes.
4. The elements Cr and Mo are examples of
a. transition metals.
b. alkaline earth metals.
c. alkali metals.
d. halogens.
e. rare earths.
5. Which of the following elements is misspelled?
a. silicone
b. chlorine
c. potassium
d. uranium
e. all are correctly spelled
6. Which of the following is an alkaline earth metal?
a. arsenic
b. strontium
c. vanadium
d. rubidium
e. uranium
7. An atom with a mass number of 59 that has 28 protons will have \qquad neutrons.
a. $\quad 14$
b. 28
c. $\quad 31$
d. 59
e. 87
8. What is the approximate mass of 10 chromium atoms?
a. $\quad 10 \mathrm{amu}$
b. $\quad 24 \mathrm{amu}$
c. $\quad 52 \mathrm{amu}$
d. $\quad 240 \mathrm{amu}$
e. 520 amu
9. When a substance undergoes a physical change
a. it always undergoes a change of state.
b. the process cannot be reversed.
c. a new substance is produced.
d. its chemical composition remains unchanged.
e. heat is always given off.
10. What is the approximate mass in grams of 100 atoms of fluorine?
a. $\quad 19 \mathrm{~g}$
b. $\quad 190 \mathrm{~g}$
c. $\quad 1.6 \times 10^{-22} \mathrm{~g}$
d. $\quad 3.2 \times 10^{-21} \mathrm{~g}$
e. $\quad 3.2 \times 10^{-24} \mathrm{~g}$
11. The number 78.6543 should be correctly rounded to what value in order to have exactly 3 significant figures?
a. $\quad 80.0$
b. $\quad 78.6$
с. $\quad 78.7$
d. $\quad 78.654$
e. $\quad 7.86 \times 10^{-3}$
12. Which of the following would you expect to be chemically similar to chlorine?
a. Ar
b. F and Br
c. $\quad \mathrm{Se}$ and Ne
d. $\quad \mathrm{O}$ and Kr
e. $\quad P$ and S
13. A neutral atom with 16 protons and 14 neutrons has
a. atomic number $=16$, mass number $=14$, symbol: Si
b. atomic number $=14$, mass number $=30$, symbol: Si
c. atomic number $=16$, mass number $=30$, symbol: S
d. atomic number $=14$, mass number $=30$, symbol: S
e. atomic number $=16$, mass number $=32.066$, symbol: S
14. A single orbital may, at most, contain
a. 1 proton.
b. 2 protons.
c. $\quad 6$ protons.
d. 2 electrons.
e. 6 electrons.
15. The formula for a compound consists of 1 magnesium atom, 1 sulfur atom and 4 oxygen atoms. Which of the following is the correct formula?
a. MgSrO
b. MgSO
c. $\quad \mathrm{MgSO}_{4}$
d. $\quad \mathrm{MgS}_{4} \mathrm{O}$
e. MgSFO_{4}
16. Which of these orbitals has the highest energy?
a. 1 s
b. 2 s
c. 3 s
d. 4 s
e. $5 s$
17. Which characteristics correctly describe a neutron?
a. charge of +1 ; mass approximately 1 amu ; located inside the nucleus
b. charge of -1 ; mass approximately 1 amu ; located inside the nucleus
c. charge of 0 ; mass approximately 1 amu ; located inside the nucleus
d. charge of 0 ; mass approximately 1 amu ; located outside the nucleus
e. charge of 0 ; mass approximately 1×10^{3} amu; located inside the nucleus
18. How many nanoliters are in 1 L ?
a. $\quad 10^{3}$
b. $\quad 10^{6}$
c. $\quad 10^{9}$
d. $\quad 10^{-6}$
e. 10^{-9}
19. A property of sodium metal is:
a. shiny or silvery appearance
b. reaction (often violently) with water
c. reaction with halogens to make 1:1 compounds
d. all of the above
e. none of the above
20. The nucleus is held together by
a. electromagnetic radiation.
b. nuclear strong force.
c. electrostatic attraction.
d. gravitational force.
e. all of the above.
21. A charged atom (-1) has 76 electrons and has a mass number (A) of 190 . How many protons and neutrons are in the nucleus of this atom?
a. $\quad 114 \mathrm{p} 190 \mathrm{n}$
b. $\quad 115 \mathrm{p} 75 \mathrm{n}$
c. $\quad 75 \mathrm{p} \quad 190 \mathrm{n}$
d. $\quad 75 \mathrm{p} \quad 115 \mathrm{n}$
e. $\quad 76 \mathrm{p} \quad 114 \mathrm{n}$
22. Which of the following pairs consists of an example of a mixture and an example of a pure substance?
a. concrete, air
b. rubbing alcohol, liquid hand soap
c. salt water, helium gas
d. anhydrous ammonia, aluminum foil
e. air, motor oil
23. How much heat would be required to increase the temperature of 5.0 grams of water by $10.0^{\circ} \mathrm{C}$? The specific heat of water is $1 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.
a. $\quad 1 \mathrm{cal}$
b. $\quad 5 \mathrm{cal}$
c. $\quad 10 \mathrm{cal}$
d. 50 cal
e. 500 cal
24. What is the mass of $2.00 \mathrm{in}^{3}$ of mercury? Note: The density of mercury is $13.6 \mathrm{~g} / \mathrm{cm}^{3}$.
a. $\quad 2.67 \mathrm{~g}$
b. $\quad 27.2 \mathrm{~g}$
c. $\quad 69.1 \mathrm{~g}$
d. $\quad 223 \mathrm{~g}$
e. $\quad 446 \mathrm{~g}$
25. How many electrons are in an atom with electron configuration: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$?
a. 5
b. 8
c. $\quad 10$
d. $\quad 11$
e. 18
26. Which of the following is a physical change or property?
a. oil floats on water
b. setting of concrete
c. iron rusts
d. digestion of protein
e. natural gas burns
27. Suppose 5.0 kcal is absorbed by equal masses of each of the following metals. Which of the metals would have the smallest temperature increase?
Au: $0.031 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \quad \mathbf{C u}: 0.091 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \quad$ Fe: $0.106 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \quad \mathbf{M g}: 0.245 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
a. Au
b. Cu
c. $\quad \mathrm{Fe}$
d. $\quad \mathrm{Mg}$
e. all would have the same temperature increase
28. The atomic weight of hydrogen from the periodic table is 1.0079 amu . From this information, what is the likely approximate isotopic composition of naturally occurring hydrogen on earth?
a. mostly protium (no neutrons)
b. mostly deuterium (1 neutron)
c. mostly tritium (2 neutrons)
d. equal amounts of protium, deuterium and tritium
e. equal amounts of protium and deuterium, with a lesser amount of tritium
29. Which of the following contains exactly 44 neutrons?
a. $\quad \mathrm{Ti}-22$
b. I-131
c. $\quad \mathrm{Sc}-44$
d. $\quad{ }^{101} \mathrm{Ru}$
e. $\quad{ }^{78} \mathrm{Se}$
30. Which digit is uncertain in the following mass?

$$
54.3210 \mathrm{~g}
$$

a. 0
b. 1
c. 2
d. 3
e. 4
31. Which of the following is equivalent to 75.0 grams?
a. $\quad 7.50 \times 10^{-4} \mathrm{mg}$
b. $\quad 7.50 \times 10^{4} \mathrm{mg}$
c. $\quad 7.50 \times 10^{7} \mathrm{mg}$
d. $\quad 7500 \mathrm{mg}$
e. $\quad 0.0750 \mathrm{mg}$
32. Arrange the following electromagnetic radiation in order of increasing energy:

red	green	infrared	ultraviolet	blue
I	II	III	IV	V

a. \quad I $<$ II $<$ V $<$ III $<$ IV
b. \quad IV $<$ III $<$ V $<$ II $<$ I
c. \quad II $<$ I $<$ III $<$ V $<$ IV
d. \quad III $<$ I $<$ II $<$ V $<$ IV
e. $\quad \mathrm{V}<\mathrm{IV}<\mathrm{II}<$ I $<$ III
33. What is the electron configuration for an uncharged (neutral) cadmium atom?
a. $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10}$
b. $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2}$
c. $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$
d. $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10}$
e. $\quad 1 s^{4} 2 s^{4} 2 p^{12} 3 s^{4} 3 p^{12} 4 s^{4} 3 d^{8}$
34. Which is a spherically-shaped region of electron density?
a. any orbital in an s subshell
b. any orbital in a p subshell
c. 3d orbital
d. $4 f$ orbital
e. none of the above
35. Benzyl salicylate, a sunscreen, melts at $24^{\circ} \mathrm{C}$ and boils at $320^{\circ} \mathrm{C}$. At which temperature would benzyl salicylate be a liquid?
a. $\quad 0^{\circ} \mathrm{C}$
b. $\quad 20^{\circ} \mathrm{C}$
c. $\quad 500^{\circ} \mathrm{C}$
d. $\quad 0^{\circ} \mathrm{F}$
e. $\quad 212^{\circ} \mathrm{F}$
36. Add the following numbers (all are mass measurements in g) and ensure the sum has the proper number of significant figures:
25.34
102.
$\begin{array}{r}+\quad 0.055 \\ \hline\end{array}$
a. $\quad 127$
b. $\quad 127.395$
c. $\quad 127.4$
d. $\quad 127.40$
e. 130
37. The density of a solution is $1.19 \mathrm{~g} / \mathrm{mL}$. What is the mass of 25 mL of this solution (with proper attention to correct significant digits)?
a. $\quad 0.048 \mathrm{~g}$
b. $\quad 21 \mathrm{~g}$
c. $\quad 21.0 \mathrm{~g}$
d. $\quad 29.8 \mathrm{~g}$
e. $\quad 30 \mathrm{~g}$
38. A calcium atom that has lost two electrons has the same number of electrons as a neutral atom of:
a. $\quad \mathrm{Ti}$
b. Ar
c. $\quad \mathrm{Mg}$
d. K
e. Be
39. The temperature $70^{\circ} \mathrm{F}$ is about the same as
a. $\quad 21 \mathrm{~K}$
b. $\quad 70 \mathrm{~K}$
c. $\quad 294 \mathrm{~K}$
d. $\quad 343 \mathrm{~K}$
e. $\quad 431 \mathrm{~K}$
40. Convert $5.0 \times 10^{-8} \mathrm{~cm}$ to units of \AA. Note that $1 \AA$ is exactly $10^{-10} \mathrm{~m}$.
a. $0.50 \AA$
b. $5.0 \AA$
c. $50 \AA$
d. $5.0 \times 10^{-2} \AA$
e. $5.0 \times 10^{1} \AA$

