Name: _____

Study section 5.1-5.2, especially examples 5.5 and 5.6, then answer the following questions. Express your answers in terms of the given parameters and fundamental constants.

A phonograph record (radius *R*) carries a uniform charge density σ . It rotates at angular velocity ω in a direction that is ccw for an observer looking down on the record from point *P*.

- 1. The spinning disk of charge constitutes a surface current; write down an expression for the surface current density in terms of given parameters:
 - **K** =
- 2. Sketch and label the vector **K**, the surface current density, for two different points on the disk.
- 3. The spinning disk will create a magnetic field; sketch and label a few field lines on the figure above.
- 4. Does your sketch show that $\nabla \cdot \mathbf{B} = 0$? Explain how your sketch satisfies this equation.

5. Write down an expression for the magnetic field, \mathbf{B} , in terms of \mathbf{K} and \mathbf{r} , the separation vector:

6. Sketch the vectors **r**, **r**' and **v** on the figure to the right.

R

x

V

7. Plug in expressions for **K** and $\boldsymbol{\kappa}$ to solve for the magnetic field at Point *P*. Set up and completely specify the integral that needs to be solved; you don't need to evaluate it.

B =