\qquad

Review the in-class example from Lesson 1 and answer the following questions. You will also need to look over Example 2.1 from the text.

1. Draw and label the field vector (\vec{r}), the source vector $\left(\vec{r}^{\prime}\right)$ and the separation vector ($\overrightarrow{\boldsymbol{r}}$) in the Figure.
2. Express the vectors $\vec{r}, \vec{r}^{\prime}$ and $\overrightarrow{\boldsymbol{z}}$ in Cartesian coordinates.

$$
\begin{aligned}
& \vec{r}= \\
& \vec{r}^{\prime}= \\
& \overrightarrow{\boldsymbol{r}}=
\end{aligned}
$$

3. On Lesson 1 we showed that the electric field at point P for this charge distribution is

$$
\stackrel{\rightharpoonup}{E}=\frac{\lambda}{4 \pi \varepsilon_{0}}\left[\frac{1}{\sqrt{L^{2}+z^{2}}}-\frac{1}{z}\right] \hat{y}+\frac{\lambda}{4 \pi \varepsilon_{0}}\left[\frac{L}{z \sqrt{L^{2}+z^{2}}}\right] \hat{z}
$$

Does this answer make sense? Describe at least one way you could assess the physical reasonableness of this result.
4. How does this expression simplify if point P is taken to be very far from the wire (i.e., in the limit $z \rightarrow \infty)$? Write down the electric field in this limit, and explain why your answer makes sense.
5. In contrast to this result, the line charge in Example 2.1 has no y-component to its electric field-why not?
6. Note that the expression for \vec{E} in question 3 does not depend on the source vector \vec{r}^{\prime}. In fact, the electric field will never depend on \vec{r}^{\prime}. In your own words, explain why this is true.

