Name: _____

z

Review the in-class example from Lesson 1 and answer the following questions. You will also need to look over Example 2.1 from the text.

- 1. Draw and label the field vector (\vec{r}), the source vector ($\vec{r'}$) and the separation vector (\vec{r}) in the Figure.
- 2. Express the vectors \vec{r} , \vec{r}' and $\vec{\pi}$ in Cartesian coordinates.
 - $\vec{r} =$ $\vec{r}' =$ $\vec{r} =$ $\vec{L} =$
- 3. On Lesson 1 we showed that the electric field at point *P* for this charge distribution is

$$\vec{E} = \frac{\lambda}{4\pi\varepsilon_{o}} \left[\frac{1}{\sqrt{L^{2} + z^{2}}} - \frac{1}{z} \right] \hat{y} + \frac{\lambda}{4\pi\varepsilon_{o}} \left[\frac{L}{z\sqrt{L^{2} + z^{2}}} \right] \hat{z}$$

Does this answer make sense? Describe at least one way you could assess the physical reasonableness of this result.

4. How does this expression simplify if point *P* is taken to be very far from the wire (i.e., in the limit $z \rightarrow \infty$)? Write down the electric field in this limit, and explain why your answer makes sense.

5. In contrast to this result, the line charge in Example 2.1 has no *y*-component to its electric field—why not?

6. Note that the expression for \vec{E} in question 3 does not depend on the source vector \vec{r}' . In fact, the electric field <u>will never</u> depend on \vec{r}' . In your own words, explain why this is true.