Study section 3.3.2 and answer the following questions (be sure to show your work).

- 1. Evaluate the following integrals. (Hint: if you use the orthogonality condition for Legendre polynomials discussed in the text, there's no need to actually work them out by brute force!)
 - (a) $\int_{0}^{\pi} P_{2}(\cos\theta) \cdot P_{2}(\cos\theta) \sin\theta \, d\theta =$ (b) $\int_{0}^{\pi} P_{7}(\cos\theta) \cdot P_{7}(\cos\theta) \sin\theta \, d\theta =$ (c) $\int_{0}^{\pi} P_{2}(\cos\theta) \cdot P_{7}(\cos\theta) \sin\theta \, d\theta =$
- 2. In Example 3.9, fill in the mathematical steps required to go from Eq. 3.82 to Eq. 3.84. (Note: I am not asking you to simply write down what's already in the text fill in the gaps).

3. In Example 3.9, suppose the surface charge density is constant, $\sigma_0(\theta) = \sigma_0$. Evaluate Eq. 3.84 for this special case, and show that the potential inside the sphere (Eq. 3.78) is what you expect it to be. (Hint: if you recognize that $\sigma_0 = \sigma_0 \cdot 1 = \sigma_0 \cdot \rho_0(\cos\theta)$, Eq. 3.84 is easy to evaluate!)