\qquad

Study section 3.3.2 and answer the following questions (be sure to show your work).

1. Show that the function $R(r)=A r^{\ell}+\frac{B}{r^{\ell+1}}$ is a solution to Eq. 3.58.
2. Show by direct integration that the functions $P_{1}(x)=x$ and $P_{2}(x)=\left(3 x^{2}-1\right) / 2$ are orthogonal on the interval (-1, 1).
3. Use the Rodrigues formula (Eq.3.62) to generate the first three Legendre polynomials: $P_{0}(x), P_{1}(x)$ and $P_{2}(x)$.
4. Two concentric, spherical conducting shells have radii R_{1} and R_{2} and potentials V_{1} and V_{2}, respectively. If we want to find the potential in the region between the shells ($R_{1}<r<R_{2}$), can we set either term (A_{ℓ} or B_{ℓ}) in Eq. 3.65 equal to zero, as was done in Examples 3.6 and 3.7? Explain.
5. In Example 3.6, suppose the boundary condition is $V_{0}(\theta)=V_{0}=$ constant. Use Eqs. 3.66 and 3.69 to find the potential $V(r, \theta)$ inside the spherical shell. Since you should already know the answer to this question, be sure to show all your work (use the back of this page).
