Study section 3.3.1 and answer the following questions:

1. Show by direct integration that the functions $\sin (x)$ and $\sin (2 x)$ are orthogonal on the interval $(0, \pi)$. Hint: the integration is easy if you use the double-angle formula $\sin (2 x)=2 \sin (x) \cos (x)$.
2. As a slight modification of the in-class example for Lesson 16 , find the separable solutions $V(x, y)$ for the region ($y<0,0<x<b$). Apply the given boundary conditions such that you are left with only one undetermined coefficient. (That is, you need not apply the boundary condition at $y=0$).

3. In example 3.4, explain how the symmetry of the potential arrangement leads to the hyperbolic cosine function as part of the solution.
