$$\begin{array}{lll} \hline \text{Constants} \\ \hline \text{Constants} \\ R = 8.3145 & \frac{J}{\text{m} \cdot \text{K}} \\ N_{A} = 6.02 \times 10^{23} & \frac{J}{\text{m} \cdot \text{K}} \\ k_{B} = \frac{R}{N_{A}} = 1.38 \times 10^{-23} & \frac{J}{\text{m} \cdot \text{K}} \\ e = 1.602 \times 10^{-10} & \text{C} \\ k = \frac{1}{4\pi\varepsilon_{0}} = 9 \times 10^{9} & \frac{\text{N} \cdot \text{m}^{2}}{\text{C}^{2}} \\ \mu_{0} = 4\pi \times 10^{-7} & \frac{\text{T} \cdot \text{m}}{\text{A}} \\ \alpha = 3 \times 10^{8} & \frac{\text{m}}{\text{s}} \\ \hline \text{Thermal Expansion} \\ \Delta L = \alpha L_{0}\Delta T \\ Q = mc\Delta T \\ Q = mc\Delta T \\ Q = mc\Delta T \\ Q = nc_{V}\Delta T \\ Heat Current \\ H = k\frac{A}{L}(T_{H} - T_{C}) \\ H = kc\frac{A}{L}(T_{H} - T_{C}) \\ H = kc\frac{Q}{V} \\ W = \frac{V_{i}}{V_{i}} \\ Heat Current \\ H = kc\frac{A}{L}(T_{H} - T_{C}) \\ H = kc\frac{Q}{V_{i}} \\ W = 0 \\ Q = nc_{V}\Delta T \\ W = 0 \\ W = 0 \\ Q = nc_{V}\Delta T \\ W = 0 \\ W = 0 \\ Q = nc_{V}\Delta T \\ W = 0 \\$$

Many Sources $\vec{E}_T = \sum_i \vec{E}_i$ $U_T = \sum_{pairs} U_{ij}$ "Elementary" E Fields $\vec{E} = k \frac{Q}{r^2} \hat{r}$ sphere $\vec{E} = \frac{\lambda}{2\pi\varepsilon_0 r} \hat{r}$ line $\vec{E} = \frac{\sigma}{2\varepsilon_0}\hat{n}$ plane $\vec{E} = \frac{\sigma}{\varepsilon_0} \hat{n} \quad \begin{array}{c} \text{conducting} \\ \text{surface} \end{array}$ **Capacitors** $C = \frac{Q}{V}$ $\begin{vmatrix} C_T = \sum_i C_i \text{ parallel} \\ \frac{1}{C_T} = \sum_i \frac{1}{C_i} \text{ series} \end{vmatrix}$ $U = \frac{1}{2}CV^{2} = \frac{Q^{2}}{2C} = \frac{1}{2}QV$ $\ddagger C = \varepsilon_{0}\frac{A}{d}$ $\dagger |E| = \frac{V}{d} = \frac{\sigma}{\varepsilon_0}$ Flux and Gauss's Law $\varphi = \iint \vec{E} \cdot d\vec{a}$ $\varphi_{\text{closed}} = \frac{Q_{\text{enclosed}}}{\varepsilon_0}$ Current and Current Density $I = \frac{dq}{dt}$ $I = \iint \vec{J} \cdot d\vec{a}$ $\vec{J} = nqv_d$

* indicates formulas that are specific to ideal gases

† indicates formulas that are specific to parallel-plate capacitors

Formula Sheet for Physics 251			
<u>Ohm's Law</u>	RC circuits (discharging)	Ampere's Law	RL Circuits (discharging)
$\vec{E} = ho \vec{J}$	$I = I \cdot e^{-\frac{t}{\tau}}$	$\oint \vec{B} \cdot d\vec{l} = \mu_0 \big(I_{\rm enc} + I_d \big)$	$I = I \cdot e^{-\frac{t}{\tau}}$
V = IR	t t	where	t^{-}
Resistivity and Resistance	$Q = Q_i e^{-\frac{\tau}{\tau}}$	$I - \epsilon \frac{d\varphi_E}{d\varphi_E}$	$V_L = V_i e^{-\tau}$
	$\tau = RC$	$I_d = C_0 dt$	$\tau = \frac{L}{L}$
$R = \int \rho \frac{1}{A}$	Magnetic Force and	Foreday's Law	R
$\rho = \rho \left[1 + \alpha (T - T) \right]$	Torque	<u>Faladay S Law</u>	AC Circuits (general)
$p = p_0 [1 + \alpha (1 - I_0)]$	$\vec{F} = q\vec{v} \times \vec{B}$	$\boldsymbol{E} = -\frac{d\boldsymbol{\varphi}_B}{dt}$	$\frac{X_{L}}{X_{L}} = \omega L$
Uniform Currents only	$d\vec{F} = Id\vec{l} \times \vec{B}$	or	$\mathbf{v} = 1$
$ E = \frac{V}{I}$	$\tau = \vec{\mu} \times \vec{B}$	$\oint_C \vec{E} \cdot d\vec{l} = \iint_S \vec{B} \cdot d\vec{a}$	$\Lambda_C = \frac{1}{\omega C}$
$R = \alpha \frac{L}{L}$	$U = -\vec{\mu} \cdot \vec{B}$	Mutual Inducence	$Z = \sqrt{R^2 + \left(X_L - X_C\right)^2}$
$K = \rho \frac{A}{A}$	Cyclotron Motion	N.On NoOne	$\tan \varphi = \frac{X_L - X_C}{T_L}$
$ J = \frac{I}{A}$		$M = \frac{1 + 17 B_1}{I_2} = \frac{1 + 27 B_2}{I_1}$	R $I = I_0 \cos \omega t$
Electric Power	$R = \frac{1}{qB}$	$\boldsymbol{E}_{1} = -M \frac{dI_{2}}{dI_{2}}$	$V = V_0 \cos(\omega t + \varphi)$
D = W	$T = \frac{2\pi m}{2\pi m}$	dt dt	$V_0 = I_0 Z$
r = rv	qB	$\boldsymbol{E}_2 = -M \frac{dI_1}{dI_1}$	$V_0 = 0$
$P = I^2 R$	$\omega - \frac{qB}{d}$	dt	$V_{rms} = \frac{V_0}{\sqrt{2}}$
$P = \frac{V^2}{V}$	$\omega_c = \frac{m}{m}$	Self Inductance	
R	Flux and Gauss's Law for	Ma	$I_{rms} = \frac{I_0}{\sqrt{2}}$
Real Batteries	Magnetism	$L = \frac{I \nabla \varphi_B}{I}$	$V_{R,\max} = IR$
$V = \mathbf{E} - Ir$	$\varphi = \iint \vec{B} \cdot d\vec{a}$	$\boldsymbol{E} = -L \frac{dI}{dI}$	$V_{L,\max} = IX_L$
Addition of Resistors	$\varphi_{\text{closed}} = 0$	dt	$V_{C,\max} = IX_C$
$R_T = R_1 + R_2 +$ series	Sources of Magnetic	$U = \frac{1}{2}LI^2$	$P = \frac{1}{2}I_0^2 R = \frac{1}{2}I_0^2 Z\cos\varphi$
$\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ parallel	Fields	PI Circuita (charging)	
$R_T = R_1 + R_2$	$\mu_{\rm p} = \mu_0 \ q \vec{v} \times \hat{r}$	<u>KL Circuits (charging)</u>	AC Circuits (resonance)
Kirchoff's rules	$B = \frac{1}{4\pi} \frac{1}{r^2}$	$I = I_f \left(1 - e^{-\frac{1}{\tau}} \right)$	$\varphi = 0$
$\sum V = 0$	$\vec{B} = \int \frac{\mu_0}{1} \frac{Id\vec{l} \times \hat{r}}{r}$		Z = R
$\sum_{loop} I = 0$	$\int 4\pi r^2$	$V_L = V_0 e^{-\frac{1}{\tau}}$	$\omega = \frac{1}{\sqrt{LC}}$
$\sum_{node} I = 0$	$ B = \frac{\mu_0 r}{2\pi r} \propto \text{straight wire}$	$\tau = \frac{L}{L}$	$X_L = X_C$
RC circuits (charging)	$ B = \frac{\mu_0 I}{1}$ center of loop	R	
$I = I_i e^{-\frac{t}{\tau}}$	$ 2R = \mu_n I \propto \text{solenoid}$		
$\begin{pmatrix} -\frac{t}{2} \end{pmatrix}$	II NI toroidal		
$Q = Q_f \left(1 - e^{-\tau} \right)$	$ B = \frac{\mu_0 m}{2\pi r}$ solenoid		
au = RC			
* 1	· · · · · 1 1		

* indicates formulas that are specific to ideal gases
† indicates formulas that are specific to parallel-plate capacitors

Formula Sheet for Physics 251
Light

$$E_{max} = cB_{max}$$

 $c = \frac{1}{\sqrt{\varepsilon_0\mu_0}}$
 $c = \lambda f$
 $\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$
 $I = S_{av} = \frac{E_{max}B_{max}}{2\mu_0}$
 $p_{rad} = \frac{S_{av}}{c}$
Propagation of Light
 $n = \frac{c}{v}$
 $\lambda = \frac{\lambda_0}{n}$
 $\theta_r = \theta_a$
 $n_a \sin \theta_a = n_b \sin \theta_b$
 $\theta_c = \frac{n_b}{n_a} (TIR)$
 $I = I_0 \cos^2 \varphi$
Focal Lengths
 $f = \frac{R}{2}$
 $l = (1 - 1)^{0}$
Formula Sheet for Physics 251
Lateral and Angular
Magnification
 $m = \frac{y'}{y} = -\frac{s'}{s}$
 $m_T = m_1m_2...$
 $M = \frac{\theta'}{\theta}$
 $M = -\frac{f_{abjective}}{f_{cycpiece}}$ Telescope
 $M = -\frac{f_{abjective}}{f_c}$ Telescope
 $power = \frac{1}{f}$ diopters
 $power = \frac{1}{f}$ diopters

 $\frac{1}{f} = (n-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$ <u>Image Location</u>

$$\frac{1}{f} = \frac{1}{s} + \frac{1}{s'}$$

* indicates formulas that are specific to ideal gases† indicates formulas that are specific to parallel-plate capacitors