Formula Sheet for Physics 251
Constants
$R=8.3145 \frac{\mathrm{~J}}{\mathrm{~m} \cdot \mathrm{~K}}$
$N_{A}=6.02 \times 10^{23}$
$k_{B}=\frac{R}{N_{A}}=1.38 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{~m} \cdot \mathrm{~K}}$
$e=1.602 \times 10^{-19} \mathrm{C}$
$k=\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}$
$\mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{~T} \cdot \mathrm{~m}}{\mathrm{~A}}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$

Thermal Expansion
$\Delta L=\alpha L_{0} \Delta T$
$\beta=3 \alpha$
Heat
$Q=m c \Delta T$
$Q= \pm m L$
$Q=n C_{V} \Delta T$
$Q=n C_{P} \Delta T$

Heat Current

$H=k \frac{A}{L}\left(T_{H}-T_{C}\right)$
$H=A e \sigma T^{4}$
Quantities
Work
$W=\int_{V_{i}}^{V_{f}} P d V$
Isochoric Processes
$W=0$
$Q=n C_{V} \Delta T$

* $\Delta U=n C_{V} \Delta T$

$|$| $m_{\text {tot }}=n M$ |
| :--- |
| $M=N_{A} m$ |
| $N=N_{A} n$ |
| $\underline{\text { Ideal gases }}$ |
| $* P V=n r T$ |
| $* P V=N k T$ |
| $* v_{R M S}=\sqrt{\frac{3 R T}{M}}$ |
| $* C_{V}=\frac{3}{2} R$ (monatomic) |
| $* C_{V}=\frac{5}{2} R$ (diatomic) |
| $* C_{P}=C_{V}+R$ |
| $\underline{\text { Isobaric Processes }}$ |
| $W=P \Delta V$ |
| $Q=n C_{P} \Delta T$ |
| $* \Delta U=n C_{V} \Delta T$ |

Isothermal Processes

* $W=n R T \ln \left(\frac{V_{f}}{V_{i}}\right)$
* $Q=n R T \ln \left(\frac{V_{f}}{V_{i}}\right)$
* $\Delta U=0$

Adiabatic Processes

* $W=-n C_{V} \Delta T$
$Q=0$
* $\Delta \mathrm{U}=n C_{V} \Delta T$
* $P_{1} V_{l}^{\gamma}=P_{2} V_{2}^{\gamma}$
* $T_{1} V_{l}^{\gamma-1}=T_{2} V_{2}^{\gamma-1}$
$\gamma=\frac{C_{P}}{C_{V}}$
Cyclic Processes
$W=Q$
$\Delta U=0$
$\begin{aligned} & \text { Heat Engines } \\ & W=Q_{H}+Q_{C} \\ & e=\frac{W}{Q_{H}} \\ & e_{c}=1-\frac{T_{C}}{T_{H}}\end{aligned}$
$\underline{\text { Refrigerators }}$
$W=Q_{H}+Q_{C}$
$K=\frac{\left|Q_{C}\right|}{|W|}$
$K_{c}=\frac{T_{C}}{T_{H}-T_{C}}$
Force, Field, Energy and Potential
$\vec{F}=q \vec{E}$
$\Delta U=q \Delta V$
$V_{a b}=\int_{a}^{b} \vec{E} \cdot d \vec{l}$
$\vec{E}=-\nabla V$
1 Point Charge
$\vec{E}=k \frac{q}{r^{2}} \hat{r}$
$V=k \frac{q}{r}$
2 Point Charges
$\vec{F}=k \frac{q_{1} q_{2}}{r^{2}} \hat{r}$
$U=k \frac{q_{1} q_{2}}{r}$
Distributed Charge
$\vec{E}=\int k \frac{d q}{r^{2}} \hat{r}$
$V=\int k \frac{d q}{r}$
$\left\lvert\, \begin{aligned} & \text { Many Sources } \\ & \vec{E}_{T}=\sum_{i} \vec{E}_{i} \\ & U_{T}=\sum_{\text {pairs }} U_{i j}\end{aligned}\right.$
"Elementary" \boldsymbol{E} Fields
$\vec{E}=k \frac{Q}{r^{2}} \hat{\mathrm{r}}$ sphere
$\vec{E}=\frac{\lambda}{2 \pi \varepsilon_{0} r} \hat{r}$ line
$\vec{E}=\frac{\sigma}{2 \varepsilon_{0}} \hat{n}$ plane
$\vec{E}=\frac{\sigma}{\varepsilon_{0}} \hat{n} \underset{\text { surface }}{\text { conducting }}$
Capacitors
$C=\frac{Q}{V}$
$\begin{aligned} C_{T} & =\sum_{i} C_{i} \text { parallel } \\ \frac{1}{C_{T}} & =\sum_{i} \frac{1}{C_{i}} \text { series }\end{aligned}$
$U=\frac{1}{2} C V^{2}=\frac{Q^{2}}{2 C}=\frac{1}{2} Q V$
$\dagger C=\varepsilon_{0} \frac{A}{d}$
$\dagger|E|=\frac{V}{d}=\frac{\sigma}{\varepsilon_{0}}$
Flux and Gauss's Law
$\varphi=\iint \vec{E} \cdot d \vec{a}$
$\varphi_{\text {closed }}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}}$
Current and Current
Density
$I=\frac{d q}{d t}$
$I=\iint \vec{J} \cdot d \vec{a}$
$\vec{J}=n q v_{d}$
* indicates formulas that are specific to ideal gases
\dagger indicates formulas that are specific to parallel-plate capacitors

Formula Sheet for Physics 251
Ohm's Law

$$
\begin{aligned}
\vec{E} & =\rho \vec{J} \\
V & =I R
\end{aligned}
$$

Resistivity and Resistance
$R=\int \rho \frac{d L}{A}$
$\rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right]$
Uniform Currents only
$|E|=\frac{V}{L}$
$R=\rho \frac{L}{A}$
$|J|=\frac{I}{A}$
Electric Power
$P=I V$
$P=I^{2} R$
$P=\frac{V^{2}}{R}$

Real Batteries

$V=\mathbf{E}-I r$
Addition of Resistors
$R_{T}=R_{1}+R_{2}+\ldots$ series
$\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots$ parallel

Kirchoff's rules

$$
\begin{aligned}
& \sum_{\text {loop }} V=0 \\
& \sum_{\text {node }} I=0
\end{aligned}
$$

$\underline{R C}$ circuits (charging)
$I=I_{i} e^{-\frac{t}{\tau}}$
$Q=Q_{f}\left(1-e^{-\frac{t}{\tau}}\right)$
$\tau=R C$
$R C$ circuits (discharging)
$I=I_{i} e^{-\frac{t}{\tau}}$
$Q=Q_{i} e^{-\frac{t}{\tau}}$
$\tau=R C$
Magnetic Force and
Torque
$\vec{F}=q \vec{v} \times \vec{B}$
$d \vec{F}=I d \vec{l} \times \vec{B}$
$\tau=\vec{\mu} \times \vec{B}$
$U=-\vec{\mu} \cdot \vec{B}$
Cyclotron Motion
$R=\frac{m v}{q B}$
$T=\frac{2 \pi m}{q B}$
$\omega_{c}=\frac{q B}{m}$
Flux and Gauss's Law for
Magnetism
$\varphi=\iint \vec{B} \cdot d \vec{a}$
$\varphi=0$

Sources of Magnetic Fields
$B=\frac{\mu_{0}}{4 \pi} \frac{q \vec{v} \times \hat{r}}{r^{2}}$
$\vec{B}=\int \frac{\mu_{0}}{4 \pi} \frac{I d \vec{l} \times \hat{r}}{r^{2}}$
$|B|=\frac{\mu_{0} I}{2 \pi r} \infty$ straight wire
$|B|=\frac{\mu_{0} I}{2 R}$ center of loop
$|B|=\mu_{0} n I \infty$ solenoid
$|B|=\frac{\mu_{0} N I}{2 \pi r}$ toroidal solenoid

Ampere's Law
$\oint \vec{B} \cdot d \vec{l}=\mu_{0}\left(I_{\mathrm{enc}}+I_{d}\right)$
where
$I_{d}=\varepsilon_{0} \frac{d \varphi_{E}}{d t}$
Faraday's Law
$\boldsymbol{E}=-\frac{d \varphi_{B}}{d t}$
or
$\oint_{C} \vec{E} \cdot d \vec{l}=\iint_{S} \vec{B} \cdot d \vec{a}$

Mutual Inducance
$M=\frac{N_{1} \varphi_{B 1}}{I_{2}}=\frac{N_{2} \varphi_{B 2}}{I_{1}}$
$\boldsymbol{E}_{1}=-M \frac{d I_{2}}{d t}$
$\boldsymbol{E}_{2}=-M \frac{d I_{1}}{d t}$
Self Inductance
$L=\frac{N \varphi_{B}}{I}$
$\boldsymbol{E}=-L \frac{d I}{d t}$
$U=\frac{1}{2} L I^{2}$
RL Circuits (charging)
$I=I_{f}\left(1-e^{-\frac{t}{\tau}}\right)$
$V_{L}=V_{0} e^{-\frac{t}{\tau}}$
$\tau=\frac{L}{R}$

$|$| $R L$ Circuits (discharging) |
| :--- |
| $I=I_{i} e^{-\frac{t}{\tau}}$ |
| $V_{L}=V_{i} e^{-\frac{t}{\tau}}$ |
| $\tau=\frac{L}{R}$ |

AC Circuits (general)
$X_{L}=\omega L$
$X_{C}=\frac{1}{\omega C}$
$Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$
$\tan \varphi=\frac{X_{L}-X_{C}}{R}$
$I=I_{0} \cos \omega t$
$V=V_{0} \cos (\omega t+\varphi)$
$V_{0}=I_{0} Z$
$V_{r m s}=\frac{V_{0}}{\sqrt{2}}$
$I_{r m s}=\frac{I_{0}}{\sqrt{2}}$
$V_{R, \text { max }}=I R$
$V_{L, \text { max }}=I X_{L}$
$V_{C, \text { max }}=I X_{C}$
$P=\frac{1}{2} I_{0}^{2} R=\frac{1}{2} I_{0}^{2} Z \cos \varphi$
AC Circuits (resonance)
$\varphi=0$
$Z=R$
$\omega=\frac{1}{\sqrt{L C}}$
$X_{L}=X_{C}$

* indicates formulas that are specific to ideal gases
\dagger indicates formulas that are specific to parallel-plate capacitors

Light

$E_{\text {max }}=c B_{\text {max }}$
$c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$
$c=\lambda f$
$\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}$
$I=S_{a v}=\frac{E_{\max } B_{\max }}{2 \mu_{0}}$
$p_{r a d}=\frac{S_{a v}}{c}$
Propagation of Light
$n=\frac{c}{v}$
$\lambda=\frac{\lambda_{0}}{n}$
$\theta_{r}=\theta_{a}$
$n_{a} \sin \theta_{a}=n_{b} \sin \theta_{b}$
$\theta_{c}=\frac{n_{b}}{n_{a}}$ (TIR)
$I=I_{0} \cos ^{2} \varphi$
Focal Lengths
$f=\frac{R}{2}$
$\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
Image Location
$\frac{1}{f}=\frac{1}{s}+\frac{1}{s^{\prime}}$

Lateral and Angular
Magnification
$m=\frac{y^{\prime}}{y}=-\frac{s^{\prime}}{s}$
$m_{T}=m_{1} m_{2} \ldots$
$M=\frac{\theta^{\prime}}{\theta}$
$M=\frac{25}{f(\mathrm{~cm})}$ Magnifier
$M=-\frac{f_{\text {objective }}}{f_{\text {eyepiece }}}$ Telescope
Cameras
f - number $=\frac{f}{D}$
Eyeglasses
power $=\frac{1}{f}$ diopters

* indicates formulas that are specific to ideal gases
\dagger indicates formulas that are specific to parallel-plate capacitors

