Each question is worth 5 points. Choose the BEST answer for each question.

1. The acetate ion is:
a. $\mathrm{CH}_{2} \mathrm{COO}^{-}$
b. $\quad \mathrm{CH}_{2} \mathrm{COO}^{2-}$
c. $\mathrm{CH}_{3} \mathrm{COO}^{-}$
d. $\mathrm{CH}_{3} \mathrm{CO}^{-}$
e. $\quad \mathrm{CH}_{3} \mathrm{COO}^{2-}$
2. Which of the following anions has a -1 charge?
a. cyanide ion
b. nitrate ion
c. carbonate ion
d. $\quad \mathbf{a}$ and \mathbf{b}
e. all of the above
3. Cobalt (II) phosphide has the formula:
a. $\mathrm{Co}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
b. $\quad \mathrm{Co}_{2} \mathrm{PO}_{4}$
c. CoP_{2}
d. $\quad \mathrm{Co}_{2} \mathrm{P}_{3}$
e. $\quad \mathrm{Co}_{3} \mathrm{P}_{2}$
4. What is the oxidation number of phosphorus in $\mathrm{P}_{4} \mathrm{O}_{6}$?
a. -3
b. -2
c. +3
d. $\quad+5$
e. $\quad+12$
5. Which of the following salts is not soluble in water?
a. KF
b. $\quad \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
c. silver nitrate
d. copper (II) fluoride
e. rubidium bicarbonate
6. The total number of valence electrons in the nitrosyl ion, NO^{+}is:
a. $\quad 10$
b. $\quad 11$
c. $\quad 15$
d. $\quad 16$
e. 30
7. Sulfurous acid, the acid that is related to the $\mathrm{SO}_{3}{ }^{2-}$ ion, has the formula:
a. $\quad \mathrm{HSO}_{4}$
b. $\quad \mathrm{H}_{2} \mathrm{SO}_{3}$
c. $\quad \mathrm{H}_{2} \mathrm{SO}_{4}$
d. HSO_{3}
e. $\quad \mathrm{H}_{3} \mathrm{SO}_{3}$
8. The molar mass of sodium oxide is about
a. $\quad 19 \mathrm{~g} / \mathrm{mol}$.
b. $\quad 30 \mathrm{~g} / \mathrm{mol}$.
c. $\quad 39 \mathrm{~g} / \mathrm{mol}$.
d. $\quad 62 \mathrm{~g} / \mathrm{mol}$.
e. $\quad 85 \mathrm{~g} / \mathrm{mol}$.
9. Which property could describe a covalent compound?
a. It is a gas at room temperature.
b. It conducts electricity when melted.
c. It is composed of a metal and a nonmetal.
d. It is a solid with a very high melting point.
e. none of the above
10. Which of the following compounds is electron deficient?
a. $\quad \mathrm{SO}_{2}$
b. $\quad \mathrm{CCl}_{4}$
c. $\quad \mathrm{PF}_{5}$
d. $\quad \mathrm{PCl}_{3}$
e. $\quad \mathrm{BCl}_{3}$
11. One of the following compounds is incorrectly named. Which one is wrong?
a. $\mathrm{Cl}_{2} \mathrm{O}_{7}$ dichlorine heptoxide
b. $\mathrm{CaCl}_{2} \quad$ calcium chloride
c. $\mathrm{FeSO}_{4} \quad$ iron (II) sulfate
d. $\mathrm{CuS} \quad$ copper (II) sulfide
e. $\mathrm{Cu}_{2} \mathrm{CO}_{3}$ copper (II) carbonate
12. How much $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ should be weighed out to have 0.650 mol ?
a. $\quad 66.4 \mathrm{~g}$
b. $\quad 97.6 \mathrm{~g}$
c. $\quad 107 \mathrm{~g}$
d. $\quad 133 \mathrm{~g}$
e. $\quad 165 \mathrm{~g}$
13. The combination of ions that will NOT produce a precipitate is:
a. $\quad \mathrm{Sr}^{2+}$ and phosphate ion
b. $\quad \mathrm{Pb}^{2+}$ and carbonate ion
c. silver ion and Br^{-}
d. barium ion and SO_{4}^{2-}
e. barium ion and bromide ion
14. How many single, covalent bonds are present in $\mathrm{CH}_{2} \mathrm{CH}_{2}$?
a. 3
b. 4
c. 5
d. 6
e. 7
15. An element (valence shell configuration is $n s^{2} n p^{4}$) forms a compound with a halogen. How many halogen atoms would be bonded to the element? Note: Assume that the central atom does NOT violate the octet rule.
a. 7
b. 6
c. 4
d. 2
e. 1
16. In the following pairs of molecules, which group contains one molecule that is polar and one molecule that is non-polar?
a. $\quad \mathrm{CS}_{2}$ and $\mathrm{H}_{2} \mathrm{~S}$
b. $\quad \mathrm{HF}$ and $\mathrm{H}_{2} \mathrm{O}$
c. $\quad \mathrm{CS}_{2}$ and CBr_{4}
d. $\quad \mathrm{CH}_{4}$ and CF_{4}
e. $\quad \mathrm{BI}_{3}$ and I_{2}
17. Which of the following equations is NOT correctly balanced?
a. $2 \mathrm{HI}+\mathrm{FrOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+2 \mathrm{FrI}$
b. $\quad 3 \mathrm{AgNO}_{3}+\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \rightarrow 3 \mathrm{NH}_{4} \mathrm{NO}_{3}+\mathrm{Ag}_{3} \mathrm{PO}_{4}$
c. $\quad \mathrm{V}_{2} \mathrm{O}_{5}+2 \mathrm{H}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
d. $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
e. $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$
18. Three moles of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ and three moles of methane $\left(\mathrm{CH}_{4}\right)$
a. have the same mass in grams.
b. contain the same number of molecules.
c. contain the same number of carbon atoms.
d. $\quad \mathbf{a}$ and \mathbf{b}
e. b and c
19. Write and balance the equation for the combustion of $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4}$.

When correctly balanced, the sum of all of the coefficients is:
a. 34
b. $\quad 39$
c. $\quad 48$
d. 49
e. 69
20. Which are spectator ions in the reaction shown here?

$$
\mathrm{RbOH}(a q)+\mathrm{HBr}(a q) \rightarrow \mathrm{RbBr}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

a. $\quad \mathrm{Br}^{-}$only
b. $\quad \mathrm{Rb}^{+}$only
c. $\quad \mathrm{H}^{+}$only
d. $\quad \mathrm{OH}^{-}$and Rb^{+}
e. $\quad \mathrm{Br}^{-}$and Rb^{+}
21. How many oxygen atoms are there in 2.0 moles dinitrogen trioxide?
a. $\quad 1.2 \times 10^{24}$
b. $\quad 1.8 \times 10^{24}$
c. $\quad 3.0 \times 10^{24}$
d. $\quad 3.6 \times 10^{24}$
e. $\quad 6.0 \times 10^{25}$
22. $\mathrm{SCl}_{5} \mathrm{Br}$ has sulfur as the central atom. This molecule is
a. an octahedral molecule with $\mu=0$.
b. an octahedral molecule with $\mu \neq 0$.
c. a trigonal bipyramidal molecule with $\mu=0$.
d. a trigonal bipyramidal molecule with $\mu \neq 0$.
e. a classic example of a nonpolar AB_{6} molecule.
23. In addition to water, which of the following is the correct formula for a product of the reaction of perchloric acid, HClO_{4}, with sodium hydroxide?
a. $\quad \mathrm{NaCl}$
b. $\quad \mathrm{NaClO}_{3}$
c. $\quad \mathrm{NaClO}_{4}$
d. $\quad \mathrm{Na}_{2} \mathrm{HClO}_{4}$
e. $\quad \mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{ClO}_{5}$
24. What is the approximate nitrogen-carbon-nitrogen bond angle in the molecule shown here?
a. $\quad 60^{\circ}$
b. $\quad 90^{\circ}$
c. $\quad 109^{\circ}$
d. $\quad 120^{\circ}$
e. 180°

25. What is the approximate fluorine-nitrogen-carbon bond angle in the molecule shown in question 24?
a. $\quad 60^{\circ}$
b. $\quad 90^{\circ}$
c. $\quad 109^{\circ}$
d. $\quad 120^{\circ}$
e. 180°

Refer to the reaction shown below for questions 26-28.

$$
3 \mathrm{PbCl}_{2}(s)+\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q) \rightarrow 3 \mathrm{PbSO}_{4}(s)+2 \mathrm{AlCl}_{3}(a q)
$$

26. Assuming excess aluminum sulfate is available, how many moles of aluminum chloride can be formed from 4.5 moles of PbCl_{2} ?
a. $\quad 0.33 \mathrm{~mol}$
b. $\quad 1.5 \mathrm{~mol}$
c. $\quad 3.0 \mathrm{~mol}$
d. $\quad 6.8 \mathrm{~mol}$
e. $\quad 9.0 \mathrm{~mol}$
27. How many moles of aluminum sulfate are needed to produce 2.4 moles of PbSO_{4} ?
a. $\quad 0.80 \mathrm{~mol}$
b. $\quad 1.2 \mathrm{~mol}$
c. $\quad 1.3 \mathrm{~mol}$
d. $\quad 1.9 \mathrm{~mol}$
e. $\quad 7.2 \mathrm{~mol}$
28. How many moles of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ are needed to completely react with 100.7 g of lead (II) chloride?
a. $\quad 0.12 \mathrm{~mol}$
b. $\quad 1.1 \mathrm{~mol}$
c. $\quad 33.6 \mathrm{~mol}$
d. $\quad 0.36 \mathrm{~mol}$
e. $\quad 3.2 \mathrm{~mol}$
29. The reaction shown here is an example of which type of reaction?

$$
\mathrm{B}_{2} \mathrm{H}_{6}+3 \mathrm{O}_{2} \rightarrow \mathrm{~B}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O}
$$

a. combustion reaction
b. redox reaction
c. acid-base neutralization reaction
d. $\quad \mathbf{a}$ and \mathbf{b}
e. all of the above
30. In the chemical equation shown here, how many moles of phosphoric acid can be produced if 10.0 g of water and 0.350 mol of $\mathrm{P}_{4} \mathrm{O}_{10}$ are combined?

$$
6 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{P}_{4} \mathrm{O}_{10}(s) \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}(a q)
$$

a. $\quad 0.233 \mathrm{~mol}$
b. $\quad 0.370 \mathrm{~mol}$
c. $\quad 1.40 \mathrm{~mol}$
d. $\quad 2.22 \mathrm{~mol}$
e. $\quad 6.67 \mathrm{~mol}$

