Physics 251 Laboratory
 Spherical Lenses

Introduction

In class recently, we have been studying optical systems and geometric optics. In this lab you will calculate the focal length of a lens system and practice using primary ray diagrams. The lens equation $\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}$ where s is the object distance, s ' the image distance and f is the focal length of the lens is used to determine focal lengths for unknown thin lens systems. Remember from lecture that power $=\frac{1}{f}$.

Equipment and Supplies

Computer with Microsoft Excel
Optics track
Light source with object

Converging lens with stand Image plate
Ruler

Section 1

1. Set up the optics track with the light source on one end followed by the lens system (fixed at the center) and the image plate as shown in the picture to the right.
2. Measure and record image distance for at least 10 different object distances (from the lens). Move the image screen until the image is in sharp focus and record the distance of the screen from the lens. These are your s and s ' for the
 system.
3. Graph $\frac{1}{s}$ vs. $\frac{1}{s^{\prime}}$ as an xy scatter plot. Add a Lens system trend line and print the equation on the graph. The y intercept, $\mathrm{b},(y=m x+b)$ is the power of the lens.

Section 2

1. Draw the principle rays for the lens systems shown on the next page.
2. Measure distances of object, image and focal points with your ruler.

\qquad
\qquad
LAB PARTNERS \qquad

Spherical Lenses
 Results

Section 1

Object	Image	Object	Image	Object	Image

1. What is the power of your lens system?
2. What is the focal length of your lens system?

Please attach your graph of $\frac{1}{s}$ vs $\frac{1}{s^{\prime}}$ with the trend line and print the equation on the graph.

Section 2

1. What is the calculated final image distance for the second system? \qquad
$\mathrm{F}_{1}=1 \mathrm{~cm}, \mathrm{~F}_{2}=2.2 \mathrm{~cm}, \mathrm{~s}=4 \mathrm{~cm}$ from the first lens, $\mathrm{d}=5.5 \mathrm{~cm}$ (between lenses)
2. Does this agree with measurements from your principle ray diagram? \qquad

Overall

Explain to "the boss" why the method used in part 1 to determine the focal length is a good (or bad) way to determine the focal length of an unknown lens. \qquad
\qquad
\qquad
\qquad

What was good about this lab and what would you do to improve it?
\qquad
\qquad
\qquad

