This print-out should have 10 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

Current in Tungsten Wire

A 1.2 V potential difference is maintained across a 0.7 m length of tungsten wire that has a cross-sectional area of 0.94 mm2 and the resistivity of the tungsten is $5.6 \times 10^{-8} \, \Omega \cdot m$.

What is the current in the wire?

Correct answer: 28.7755 A.

Drift Speed in Copper Wire

Calculate the average drift speed of electrons traveling through a copper wire with a cross-sectional area of 90 mm2 when carrying a current of 80 A (values similar to those for the electric wire to your study lamp). Assume one electron per atom of copper contributes to the current. The atomic mass of copper is 63.5 g/mol and its density is 8.93 g/cm3. Avogadro’s number N_A is 6.02×10^{23}.

Correct answer: 6.56226×10^{-5} m/s.

Electric Shock

The damage caused by electric shock depends on the current flowing through the body; 1 mA can be felt and 5 mA is painful. Above 15 mA, a person loses muscle control, and 70 mA can be fatal. A person with dry skin has a resistance from one arm to the other of about 50000 Ω. When skin is wet, the resistance drops to about 4800 Ω.

What is the minimum voltage placed across the arms that would produce a current that could be felt by a person with dry skin?

Correct answer: 50 V.

Using the same electric potential as in Part 1, what would be the current if the person had wet skin?

Correct answer: 10.4167 mA.

Decreasing Current

Suppose that the current through a conductor decreases exponentially with time according to $I(t) = I_0 e^{-t/\tau}$ where I_0 is the initial current at $t = 0$, and τ is a constant having dimensions of time. Consider a fixed observation point within the conductor.

How much charge passes this point between $t = 0$ and $t = \infty$?

1. $0.632 I_0^2 \tau$
2. $Q = \frac{1.72 I_0}{\tau}$
3. $Q = \frac{I_0}{\tau}$
4. $Q = I_0^2$
5. $Q = 1.72 I_0$
6. $Q = \frac{0.632 I_0}{\tau}$
7. $0.632 I_0$ correct
8. $Q = 0.632 I_0 \tau$
9. $Q = \frac{2.72 I_0}{\tau}$
10. $Q = 2.72 I_0$

006 (part 1 of 2) 10.0 points

How much charge passes this point between $t = 0$ and $t = \tau$?

1. $0.632 I_0^2 \tau$
2. $Q = \frac{1.72 I_0}{\tau}$
3. $Q = \frac{I_0}{\tau}$
4. $Q = I_0^2$
5. $Q = 1.72 I_0$
6. $Q = \frac{0.632 I_0}{\tau}$
7. $0.632 I_0$ correct
8. $Q = 0.632 I_0 \tau$
9. $Q = \frac{2.72 I_0}{\tau}$
10. $Q = 2.72 I_0$
2. \(Q = 0.632 I_0 \)

3. an infinite amount

4. \(Q = \frac{I_0}{\tau} \)

5. \(Q = 2.72 I_0 \tau \)

6. \(Q = I_0 \tau \) correct

7. \(Q = I_0^2 \)

8. \(Q = 0.632 I_0^2 \tau \)

9. \(Q = \frac{2.72 I_0}{\tau} \)

10. \(Q = 0.632 I_0 \tau \)

Reforming a Wire
008 10.0 points
A 17.8 \(\Omega \) metal wire is cut into three equal pieces that are then connected side by side to form a new wire the length of which is equal to one-third the original length.
What is the resistance of this new wire?

Correct answer: 1.97778 \(\Omega \).

Electric Heater
009 (part 1 of 2) 10.0 points
An electric heater operating at full power draws a current of 11 A from a 144 V circuit.
What is the resistance of the heater?

Correct answer: 13.0909 \(\Omega \).

010 (part 2 of 2) 10.0 points
Assuming constant \(R \), how much current should the heater draw in order to dissipate 920 W?

Correct answer: 8.38318 A.