This print-out should have 12 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

Cartesian Coordinates

001 (part 1 of 2) 10.0 points
Two points have cartesian coordinates $(6.7 \text{ m}, -10 \text{ m})$ and $(-10 \text{ m}, 9.7 \text{ m})$.
Find the distance between these points.
Correct answer: 25.826 m.

002 (part 2 of 2) 10.0 points
What is the angle between the line connecting the two points and the x-axis (measured counter-clockwise from the x-axis and within the limits of -180° to $+180^\circ$)?
Correct answer: 130.288°.

Distance to the Origin

003 (part 1 of 2) 10.0 points
The cartesian coordinates of a point in the xy plane are $x = -6.08 \text{ m}, y = -6.39 \text{ m}$.
Find the distance r from the point to the origin.
Correct answer: 8.82035 m.

004 (part 2 of 2) 10.0 points
Calculate the angle θ between the radius-vector of the point and the positive x axis (measured counterclockwise from the positive x axis, within the limits of -180° to $+180^\circ$).
Correct answer: -133.576°.

Vector Components 02

005 (part 1 of 2) 10.0 points
A vector representing 140 N is oriented at 35° with the horizontal.
What is the magnitude of its horizontal component?
Correct answer: 114.681 N.

006 (part 2 of 2) 10.0 points
What is the magnitude of its vertical component?
Correct answer: 80.3007 N.

Descent Vehicle

007 (part 1 of 2) 10.0 points
A descent vehicle landing on the moon has a vertical velocity toward the surface of the moon of 27.8 m/s. At the same time, it has a horizontal velocity of 53.8 m/s.
At what speed does the vehicle move along its descent path?
Correct answer: 60.5581 m/s.

008 (part 2 of 2) 10.0 points
At what angle with the vertical is its path?
Correct answer: 62.6733°.

Vector Addition 02

009 (part 1 of 2) 10.0 points
Two vectors \mathbf{A} and \mathbf{B}, are lying in the xy plane and given by

\[\mathbf{A} = A_x \mathbf{i} + A_y \mathbf{j} \]
\[\mathbf{B} = B_x \mathbf{i} + B_y \mathbf{j}. \]

where $A_x = 4.31 \text{ m}, A_y = 0.162 \text{ m}, B_x = 3.88 \text{ m}, B_y = -4.22 \text{ m}$. Let $\mathbf{R} = \mathbf{A} + \mathbf{B}$.
Find the magnitude of \mathbf{R}.
Correct answer: 9.14021 m.

010 (part 2 of 2) 10.0 points
Find the angle θ that the vector \mathbf{R} makes from the positive x axis. Choose your answer to be between -180° and $+180^\circ$. The positive angular direction is counter clockwise measured from the x axis.
Correct answer: -26.3576°.

Scalar Product 02

011 (part 1 of 2) 10.0 points
The vectors $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{B}}$ are given by

\[\tilde{\mathbf{A}} = 4.76 \hat{i} + 3.74 \hat{j} \]
\[\tilde{\mathbf{B}} = -1.59 \hat{i} + 4.61 \hat{j} \]
Find the scalar product $\vec{A} \cdot \vec{B}$.

Correct answer: 9.673.

Find the angle between \vec{A} and \vec{B}.

Correct answer: 70.8722°.