This print-out should have 15 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 (part 1 of 3) 10.0 points
The magnetic field over a certain range is given by \(\vec{B} = B_x \hat{i} + B_y \hat{j} \), where \(B_x = 7 \text{ T} \) and \(B_y = 5 \text{ T} \). An electron moves into the field with a velocity \(\vec{v} = v_x \hat{i} + v_y \hat{j} + v_z \hat{k} \), where \(v_x = 5 \text{ m/s}, v_y = 8 \text{ m/s} \) and \(v_z = 9 \text{ m/s} \).

The charge on the electron is \(-1.602 \times 10^{-19} \text{ C} \).

What is the \(\hat{i} \) component of the force exerted on the electron by the magnetic field? Answer in units of \(\text{N} \).

002 (part 2 of 3) 10.0 points
What is the \(\hat{j} \) component of the force? Answer in units of \(\text{N} \).

003 (part 3 of 3) 10.0 points
What is the \(\hat{k} \) component of the force? Answer in units of \(\text{N} \).

004 10.0 points
A negatively charged particle moving parallel to the \(y \)-axis enters a magnetic field (pointing out of of the page), as shown in the figure below.

Figure: \(\hat{i} \) is in the \(x \)-direction, \(\hat{j} \) is in the \(y \)-direction, and \(\hat{k} \) is in the \(z \)-direction.

What is the initial direction of deflection?

1. \(\vec{F} = -\hat{k} \)
2. \(\vec{F} = \frac{1}{\sqrt{2}} (-\hat{i} + \hat{j}) \)
3. \(\vec{F} = \frac{1}{\sqrt{2}} (-\hat{i} - \hat{k}) \)
4. \(\vec{F} = 0 \); no deflection
5. \(\vec{F} = \frac{1}{\sqrt{2}} (\hat{j} - \hat{k}) \)
6. \(\vec{F} = \frac{1}{\sqrt{2}} (\hat{j} + \hat{k}) \)

005 10.0 points
A negatively charged particle moving at 45° angles to both the \(z \)-axis and \(x \)-axis enters a magnetic field (pointing out of of the page), as shown in the figure below.

Figure: \(\hat{i} \) is in the \(x \)-direction, \(\hat{j} \) is in the \(y \)-direction, and \(\hat{k} \) is in the \(z \)-direction.

What is the initial direction of deflection?

1. \(\vec{F} = -\hat{i} \)
2. \(\vec{F} = +\hat{i} \)
3. \(\vec{F} = -\hat{j} \)
3. \(\vec{F} = 0 \); no deflection
5. \(\vec{F} = +\hat{k} \)
6. \(\vec{F} = +\hat{j} \)
6. \(\vec{F} = \frac{1}{\sqrt{2}} (\hat{i} + \hat{j}) \)

6. \(\vec{F} = \frac{1}{\sqrt{2}} (\hat{i} + \hat{k}) \)

8. \(\vec{F} = \frac{1}{\sqrt{2}} (\hat{j} + \hat{k}) \)

006 10.0 points

A negatively charged particle moving at 45° angles to both the y-axis and z-axis enters a magnetic field (pointing into of the page), as shown in the figure below.

Figure: \(\hat{i} \) is in the x-direction, \(\hat{j} \) is in the y-direction, and \(\hat{k} \) is in the z-direction.

What is the initial direction of deflection?

1. \(\vec{F} = \frac{1}{\sqrt{2}} (\hat{k} - \hat{i}) \)

1. \(\vec{F} = \frac{1}{\sqrt{2}} (\hat{i} - \hat{j}) \)

2. \(\vec{F} = \frac{1}{\sqrt{2}} (\hat{k} - \hat{j}) \)

3. \(\vec{F} = \frac{1}{\sqrt{2}} (-\hat{k} + \hat{i}) \)

3. \(\vec{F} = \frac{1}{\sqrt{2}} (-\hat{k} - \hat{i}) \)

4. \(\vec{F} = 0; \) no deflection

5. \(\vec{F} = \frac{1}{\sqrt{2}} (-\hat{k} - \hat{j}) \)

6. \(\vec{F} = \frac{1}{\sqrt{2}} (-\hat{k} + \hat{j}) \)

7. \(\vec{F} = \frac{1}{\sqrt{2}} (-\hat{i} + \hat{j}) \)

9. \(\vec{F} = \frac{1}{\sqrt{2}} (-\hat{i} - \hat{j}) \)

007 10.0 points

A positively charged particle moving parallel to the x-axis enters a magnetic field (pointing toward the top of the page), as shown in the figure below.

Figure: \(\hat{i} \) is in the x-direction, \(\hat{j} \) is in the y-direction, and \(\hat{k} \) is in the z-direction.

What is the initial direction of deflection?

1. \(\vec{F} = 0; \) no deflection

1. \(\vec{F} = -\hat{j} \)

2. \(\vec{F} = +\hat{i} \)

3. \(\vec{F} = +\hat{j} \)

4. \(\vec{F} = +\hat{k} \)

5. \(\vec{F} = -\hat{i} \)

5. \(\vec{F} = -\hat{k} \)

008 10.0 points

A conductor suspended by two flexible wires as in the figure has a mass per unit length of 0.34 kg/m.

The acceleration of gravity is 9.8 m/s².
What current must exist in the conductor in order for the tension in the supporting wires to be zero when the magnetic field is 7 T into the page? Answer in units of A.

An electron enters a region of uniform magnetic field and is observed to execute circular motion, completing 103 revolutions in $\Delta T = 0.951 \text{ ms}$.

The mass of the electron is $9.10939 \times 10^{-31} \text{ kg}$ and its charge is $1.60218 \times 10^{-19} \text{ C}$.

Calculate the magnitude of the magnetic field in this region. Answer in units of mT.

A mass spectrometer, constructed as shown in the diagram, is to be used for determining the mass of singly ionized positively charged ions.

There is a uniform magnetic field 0.1 T perpendicular to the page \hat{k} throughout the diagram. A potential difference 2100 V is applied across the parallel plates L and K, which are separated by a distance 1 cm and which act as a velocity selector.

The proton charge is $1.60217 \times 10^{-19} \text{ C}$.

In which direction (relative to the coordinate system shown above) should the magnetic field point in order for positive ions to move along the path shown by the dotted line in the diagram above?

1. $\vec{B} = -\hat{k}$
2. $\vec{B} = -\hat{j}$
3. $\vec{B} = +\hat{i}$
4. $\vec{B} = +\hat{j}$
5. $\vec{B} = +\hat{k}$

Should plate K have a positive or negative voltage polarity with respect to grounded plate L?

1. Negative
2. Voltage should be zero.
3. Positive

Calculate the magnitude of the electrical field between the plates. Answer in units of V/m.

Calculate the speed of a particle that can pass between the parallel plates without being deflected. Answer in units of m/s.

Calculate the mass of a hypothetical singly charged ion that travels in a semicircle of radius $R = 45 \text{ cm}$. Answer in units of kg.
A doubly ionized positive ion of the same mass and velocity as the singly charged ion enters the mass spectrometer.

What is the radius of its path? Answer in units of m.