This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

Find the current through the 21.2 Ω lower-right resistor. Answer in units of A.

002 (part 1 of 2) 10.0 points

For a long period of time the switch \(S \) is in position “b”. At \(t = 0 \) s, the switch \(S \) is moved from position “b” to position “a”.

Find the voltage across the 2 MΩ center-left resistor at time \(t_1 = 3 \) s. Answer in units of V.

003 (part 2 of 2) 10.0 points

Much later, at some time \(t'_0 = 0 \) s, the switch is moved from position “a” to position “b”.

Find the voltage across the 2 MΩ center-left resistor at time \(t' = 1.6 \) s. Answer in units of V.

004 (part 1 of 2) 10.0 points

The switch has been open for a long period of time.

Immediately after the switch is closed, the current supplied by the battery is

1. \(I_0 = \frac{V (R_1 + R_2)}{R_1 R_2} \).
2. \(I_0 = \frac{V}{R_1} \).
3. \(I_0 = \frac{V}{R_2} \).
4. \(I_0 = 0 \).

005 (part 2 of 2) 10.0 points

A long time after the switch has been closed, the current \(I_\infty \) supplied by the battery is

1. \(I_\infty = \frac{V}{R_2} \).
2. \(I_\infty = \frac{V}{R_1} \).
3. \(I_\infty = 0 \).
4. \(I_\infty = \frac{V}{R_1 + R_2} \).

006 (part 1 of 2) 10.0 points
How long after the switch is closed does the voltage across the resistor drop to $V_f = 8.3\,\text{V}$? Answer in units of s.

007 (part 2 of 2) 10.0 points
What is the charge on the capacitor at this time? Answer in units of C.

008 10.0 points
At $t=0$ the switch S is closed with the capacitor is uncharged.

What is the charge on the capacitor when $I = 2\,\text{mA}$? Answer in units of C.