This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points
Two insulating spheres having radii 0.43 cm and 0.63 cm, masses 0.13 kg and 0.77 kg, and charges $-4 \mu C$ and $4 \mu C$ are released from rest when their centers are separated by 1.6 m.

How fast is the smaller sphere moving when they collide? Answer in units of m/s.

002 10.0 points
Note: The force of gravity does not enter into this problem.
A charged particle is connected to a string that is tied to the pivot point P. The particle, string, and pivot point all lie on a horizontal table (consequently the figure below is viewed from above the table). The particle is initially released from rest when the string makes an angle 85° with a uniform electric field in the horizontal plane (shown in the figure).

Determine the speed of the particle when the string is parallel to the electric field. Answer in units of m/s.

003 (part 1 of 2) 10.0 points
A deuteron (a nucleus that consists of one proton and one neutron) is accelerated through a 3.03 kV potential difference.

How much kinetic energy does it gain? Answer in units of J.

004 (part 2 of 2) 10.0 points
How fast is it going if it starts from rest?

005 10.0 points
Consider an equilateral triangle with sides of lengths 2.7 μm and charge $-0.2 \mu C$, 1.9 μC and 1.4 μC located at the corners of the triangle.

Find the minimum work required to move the first point charge to infinity. Answer in units of J.

006 10.0 points
Particles A (of mass m and charge Q) and B (of m and charge 5 Q) are released from rest with the distance between them equal to 0.9401 m.

If $Q = 27 \mu C$, what is the kinetic energy of particle B at the instant when the particles are 2.9401 m apart? Answer in units of J.

007 10.0 points
A charge of 5 μC is distributed uniformly along the circumference of a circle with a radius of 27 cm.

The Coulomb constant is 8.98755×10^9 N \cdot m2/C2.

How much external energy is required to bring a charge of 53 μC from infinity to the center of the circle? Answer in units of J.

008 10.0 points
A charge of 7.209 nC is uniformly distributed along the x-axis from -4 m to 4 m.

What is the electric potential (relative to zero at infinity) of the point at 5 m on the x-axis? Answer in units of V.