This print-out should have 14 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points
A 54 cm diameter loop is rotated in a uniform electric field until the position of maximum electric flux is found. The flux in this position is measured to be 8.02×10^5 N · m2/C.
What is the electric field strength? Answer in units of N/C.

002 (part 1 of 3) 10.0 points
An electric field of magnitude 3350 N/C is applied along the x axis.
Calculate the electric flux through a rectangular plane 0.542 m wide and 0.79 m long if the plane is parallel to the yz plane. Answer in units of N · m2/C.

003 (part 2 of 3) 10.0 points
Calculate the electric flux through the same rectangle, if it is parallel to the xy plane. Answer in units of N · m2/C.

004 (part 3 of 3) 10.0 points
Calculate the electric flux through the same rectangle, but now the rectangle contains the y axis and its normal makes an angle of 28° with the x axis. Answer in units of N · m2/C.

005 10.0 points
A point charge $7.5 \mu C$ is located at the center of a uniform ring having linear charge density $15 \mu C/m$ and radius 4.92 m.

Determine the total electric flux through a sphere centered at the point charge and having radius R, where $R < a$, as shown. Answer in units of N · m2/C.

006 (part 1 of 3) 10.0 points
The charge per unit length on a long, straight filament is $90 \mu C/m$.
Find the electric field 13.6 cm from the filament, where the distance is measured perpendicular to the length of the filament. Answer in units of N/C.

007 (part 2 of 3) 10.0 points
Find the electric field 18 cm from the filament. Answer in units of N/C.

008 (part 3 of 3) 10.0 points
Find the electric field 142 cm from the filament. Answer in units of N/C.

009 (part 1 of 4) 10.0 points
A solid sphere of radius 51 cm has a total positive charge of 34.7 μC uniformly distributed throughout its volume.
Calculate the magnitude of the electric field at the center of the sphere. Answer in units of N/C.

010 (part 2 of 4) 10.0 points
Calculate the magnitude of the electric field 12.75 cm from the center of the sphere. Answer in units of N/C.

011 (part 3 of 4) 10.0 points
Calculate the magnitude of the electric field 51 cm from the center of the sphere. Answer in units of N/C.

012 (part 4 of 4) 10.0 points
Calculate the magnitude of the electric field 90.9 cm from the center of the sphere. Answer in units of N/C.

013 (part 1 of 2) 10.0 points
Consider a thin spherical shell of radius 14.3 cm with a total charge of 30.7 μC distributed uniformly on its surface.
Find the electric field 6.8 cm from the center of the charge distribution. Answer in units of N/C.

014 (part 2 of 2) 10.0 points
Find the electric field 18.1 cm from the center
of the charge distribution. Answer in units of N/C.