This print-out should have 10 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 (part 1 of 2) 10.0 points

A solenoid has 101 turns of wire uniformly wrapped around an air-filled core, which has a diameter of 10 mm and a length of 10.7 cm. The permeability of free space is \(1.25664 \times 10^{-6} \text{ N}/\text{A}^2 \).

Calculate the self-inductance of the solenoid.

Answer in units of H.

002 (part 2 of 2) 10.0 points

The core is replaced with a soft iron rod that has the same dimensions, but a magnetic permeability of \(800 \mu\mu_0 \).

What is the new inductance?

Answer in units of H.

003 10.0 points

A spring has a radius of 3.8 cm and an inductance of 180 \(\mu \)H when extended to a length of 3 m.

Find an approximate value for the total number of turns in the spring. The permeability of free space is \(1.25664 \times 10^{-6} \text{ N}/\text{A}^2 \).

Answer in units of turns.

004 10.0 points

At times prior to \(t = 0 \), the switch is open. The switch is closed at \(t = 0 \).

When \(I = 19 \text{ mA} \), what is the potential difference across the inductor?

Answer in units of V.

005 (part 1 of 3) 10.0 points

An inductor and a resistor are connected with a double pole switch to a battery as shown in the figure.

The switch has been in position \(b \) for a long period of time.

If the switch is thrown from position \(b \) to position \(a \) (connecting the battery), how much time elapses before the current reaches 112 mA?

Answer in units of ms.

006 (part 2 of 3) 10.0 points

What is the maximum current in the inductor a long time after the switch is in position \(a \)?

Answer in units of A.

007 (part 3 of 3) 10.0 points

The switch has brushes within it so that the switch can be thrown from \(a \) to \(b \) without internal sparking. Now the switch is smoothly thrown from \(a \) to \(b \), shorting the inductor and resistor.

How much time elapses before the current falls to 100 mA?

Answer in units of ms.

008 10.0 points

In an RL series circuit, an inductor of 3.49 H and a resistor of 6.78 \(\Omega \) are connected to a 24.7 V battery. The switch of the circuit is initially open. Next close the switch and wait for a long time. Eventually the current reaches its equilibrium value.

At this time, what is the corresponding energy stored in the inductor?

Answer in units of J.

009 (part 1 of 2) 10.0 points

The switch in the figure is closed at \(t = 0 \).
Find the time constant of the circuit if \(L = 26.5 \text{ mH} \), \(\mathcal{E} = 12.8 \text{ V} \), \(R = 4.95 \Omega \).
Answer in units of ms.

\[010 \text{ (part 2 of 2) 10.0 points} \]
Calculate the current in the circuit at \(t = 2.4 \text{ ms} \).
Answer in units of A.