This print-out should have 9 questions. Multiple-choice questions may continue on the next column or page—find all choices before answering.

001 10.0 points
Consider an equilateral triangle with sides of lengths 3.4 μm and charge -0.2μC, 1.7 μC and 1.8 μC located at the corners of the triangle.
Find the minimum work required to move the first point charge to infinity. Answer in units of J.

002 10.0 points
A charge of 9 μC is distributed uniformly along the circumference of a circle with a radius of 59 cm.
The Coulomb constant is 8.98755×10^9 N \cdot m2/C2.
How much external energy is required to bring a charge of 31 μC from infinity to the center of the circle? Answer in units of J.

003 10.0 points
Particles A (of mass m and charge Q) and B (of m and charge 5 Q) are released from rest with the distance between them equal to 0.5079 m.
If $Q = 20 \mu$C, what is the kinetic energy of particle B at the instant when the particles are 2.5079 m apart? Answer in units of J.

004 (part 1 of 3) 10.0 points
A proton is released from rest in a uniform electric field of magnitude 1.5×10^5 V/m directed along the positive x-axis. The proton undergoes a displacement of 0.3 m in the direction of the electric field as shown in the figure.
The mass of a proton is 1.672623×10^{-27} kg.

Find the change in the electric potential if the proton moves from the point A to B. Answer in units of V.

005 (part 2 of 3) 10.0 points
Find the change in potential energy of the proton for this displacement. Answer in units of J.

006 (part 3 of 3) 10.0 points
Apply the principle of energy conservation to find the speed of the proton after it has moved 0.3 m, starting from rest. Answer in units of m/s.

007 10.0 points
A uniform electric field of magnitude 281 V/m is directed in the positive x-direction. Suppose a 24 μC charge moves from the origin to point A at the coordinates, (28 cm, 52 cm).

What is the absolute value of the change in potential from the origin to point A? Answer in units of V.

008 (part 1 of 2) 10.0 points
A deuteron (a nucleus that consists of one proton and one neutron) is accelerated through a 4.23 kV potential difference.
How much kinetic energy does it gain? Answer in units of J.
009 (part 2 of 2) 10.0 points
How fast is it going if it starts from rest?
Answer in units of m/s.