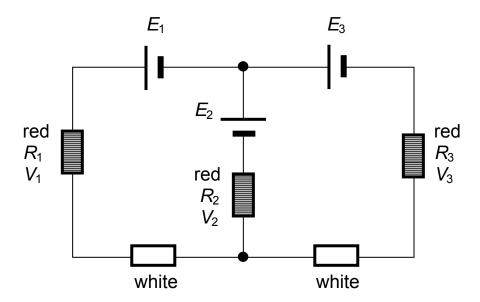
KIRCHHOFF'S LAWS

OBJECTIVE

To calculate the currents in a multiloop circuit using Ohm's Law and comparing the results to those calculated with Kirchhoff's Current and Voltage Laws

EQUIPMENT


3 battery packs, circuit board, 2 white shunt connectors, 3 red 75- Ω resistive connectors, multimeter

THEORY

- Kirchhoff's Current Law: $\Sigma I = 0$ at any node.
- Kirchhoff's Voltage Law: $\Sigma V = 0$ around any loop.
- Ohm's Law: V = IR for any resistor.

PROCEDURE

- 1) Measure the resistance of each <u>red</u> connector (R_1, R_2, R_3) .
- 2) Set up the circuit shown below.
- 3) Measure the terminal voltage across each battery pack (E_1 , E_2 , E_3) while they are powering the circuit board.
- 4) Measure the voltages across the red connectors (V_1, V_2, V_3) and calculate their currents using Ohm's Law: $I_1 = V_1/R_1$, $I_2 = V_2/R_2$, $I_3 = V_3/R_3$.
- 5) Use Kirchhoff's Laws to calculate the currents I_1 , I_2 , and I_3 using only resistances R_1 , R_2 , R_3 and terminal voltages E_1 , E_2 , E_3 .
- 6) Compute the percent discrepancy between your results in Steps 4 and 5.

Name	Date
Partners	

KIRCHHOFF'S LAWS DATA SHEET

Ohm's Law results:

R ₁ =Ω	V ₁ = V	I ₁ = A
$R_2 = \underline{\hspace{1cm}} \Omega$	V ₂ = V	I ₂ = A
R ₃ =Ω	V ₃ = V	I ₃ = A

Terminal voltages:

$$E_1 =$$
______ V $E_2 =$ _____ V $E_3 =$ _____ V

Show your Kirchhoff's Laws calculations on a separate sheet. Staple it to this sheet when you turn in your work.

Final Results:

Currents	Ohm's Law	Kirchhoff's Laws	% discrepancy
<i>I</i> ₁			
<i>l</i> ₂			
<i>I</i> ₃			

Use % discrepancy = $\frac{100 \cdot |\textit{Meas} - \textit{Theo}|}{\textit{Theo}}$ where Meas = Ohm's Law currents, and Theo = Kirchhoff's Laws currents