This print-out should have 11 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. The due time is Central time.

PLEASE REMEMBER THAT YOU MUST CARRY OUT YOUR CALCULA-TIONS TO AT LEAST THREE SIGNIFI-CANT FIGURES. YOUR ANSWER MUST BE WITHIN ONE PERCENT OF THE CORRECT RESULT TO BE MARKED AS CORRECT BY THE SERVER.

001 (part 1 of 2) 5 points

The cartesian coordinates of a point in the xy plane are x = -2.64 m, y = -4.65 m.

Find the distance, r, from the point to the origin. Answer in units of m.

002 (part 2 of 2) 4 points

Calculate the angle θ between the radiusvector of the point and the positive x axis (measured counterclockwise from the positive x axis, within the limits of -180° to $+180^{\circ}$). Answer in units of $^{\circ}$.

003 (part 1 of 2) 5 points

A descent vehicle landing on the moon has a vertical velocity toward the surface of the moon of 29.7 m/s. At the same time, it has a horizontal velocity of 58.9 m/s.

a) At what speed does the vehicle move along its descent path? Answer in units of m/s.

004 (part 2 of 2) 4 points b) At what angle with the vertical is its path? Answer in units of °.

005 (part 1 of 2) 5 points Vector \vec{B} has x, y, and z components of 9.7, 5.9, and 6 units, respectively. Calculate the magnitude of \vec{B} .

006 (part 2 of 2) 4 points What is the angle between \vec{B} and the *x*- axis? Answer in units of $^{\circ}$.

007 (part 1 of 2) 5 points

Two vectors \mathbf{A} and \mathbf{B} , are lying in the xy plane and given by

$$\mathbf{A} = A_x \, \mathbf{i} + A_y \, \mathbf{j}$$
$$\mathbf{B} = B_x \, \mathbf{i} + B_y \, \mathbf{j}$$

where $A_x = 3.78$ m, $A_y = 0.0594$ m, $B_x = 6.4$ m, $B_y = -5.05$ m. Let $\mathbf{R} = \mathbf{A} + \mathbf{B}$.

Find the magnitude of \mathbf{R} . Answer in units of m.

008 (part 2 of 2) 4 points

Find the angle θ that the vector **R** makes from the positive x axis. Choose your answer to be between -180° and $+180^{\circ}$. The positive angular direction is counter clockwise measured from the x axis. Answer in units of $^{\circ}$.

009 (part 1 of 2) 5 points The vectors \vec{A} and \vec{B} are given by

$$egin{array}{lll} ec{A} = 2.24\,\hat{i} + 3.08\,\hat{j} \ ec{B} = -1.72\,\hat{i} + 4.3\,\hat{j} \end{array}$$

Find the scalar product $\vec{A} \cdot \vec{B}$.

010 (part 2 of 2) 4 points Find the angle between \vec{A} and \vec{B} . Answer in units of °.

 $\begin{array}{c} \textbf{011} \ (\text{part 1 of 1}) \ 5 \ \text{points} \\ Given: \ \text{Two vectors} \end{array}$

$$\vec{A} = A_x \,\hat{\imath} + A_y \,\hat{\jmath}$$

and

$$\vec{B} = B_x \,\hat{\imath} + B_y \,\hat{\jmath} \,,$$

where $A_x = -4$, $A_y = 1$, $B_x = 4$, and $B_y = 4$. Find the *z* component of $\vec{A} \times \vec{B}$.