Problem 1
$R_{x}=4.00 \cos 135^{\circ}+5.00 \cos 245^{\circ}+7.00 \cos \left(-35^{\circ}\right)=0.792 \mathrm{~km}$
$R_{y}=4.00 \sin 135^{\circ}+5.00 \sin 245^{\circ}+7.00 \sin \left(-35^{\circ}\right)=-5.718 \mathrm{~km}$
(A) $R=\sqrt{R_{x}^{2}+R_{y}^{2}}=\underline{\underline{\mathbf{5 . 7 7} \mathbf{~ k m}}}$
(B) $\theta=\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right)=\underline{\underline{\mathbf{8 2 . 1}}{ }^{\circ} \text { south of east }}$

Problem 2
(A) $\Delta x=v_{i} t+\frac{1}{2} a t^{2}$

$$
200=0+0.5(3.00) t^{2} \rightarrow t=\underline{\underline{\mathbf{1 1} .5} \mathbf{~ s e c}}
$$

(B) $v_{f}=v_{i}+a t$

$$
v_{f}=0+(3.00)(11.6)=\underline{\underline{\mathbf{3 4 . 6} \mathbf{~ m} / \mathrm{s}}}
$$

(C) $\Delta x=v t$

$$
300=(34.6) t \rightarrow t=\underline{\underline{8.66 ~ s e c}}
$$

Problem 3

(A) $f=\mu n=0.64(2.00)(9.8)=\underline{\underline{\mathbf{1 2 . 5} \mathbf{N}}}$
(B) $F_{\text {net }}=m a$ ("super-block")

$$
28.0 \cos 37^{\circ}-12.5 \mathrm{~N}=(6.00) a \rightarrow a=\underline{\underline{\mathbf{1 . 6}} \mathbf{~ m} / \mathbf{s}^{2}}
$$

(C) $F_{\text {net }}=m a$ (2.00-kg block only)
$T-12.5 \mathrm{~N}=(2.00)(1.64) \rightarrow T=\underline{\underline{\mathbf{1 5 . 8} \mathbf{N}}}$

Problem 4

$v_{i x}=1.20 \cos \left(-30^{\circ}\right)=1.04 \mathrm{~m} / \mathrm{s}$
$v_{i y}=1.20 \sin \left(-30^{\circ}\right)=-0.60 \mathrm{~m} / \mathrm{s}$
(A) $\Delta y=v_{i v} t-\frac{1}{2} g t^{2}$

$$
\begin{array}{ll}
-9.00=-0.600 t-4.9 t^{2} \rightarrow & 4.9 t^{2}+0.600 t-9.00=0 \text { use quadratic formula to solve } \\
t=\underline{\underline{\mathbf{1 . 3 0} \text { sec }}}
\end{array}
$$

(B) $d=\Delta x=v_{i x} t=(1.04)(1.30)=\underline{\underline{\mathbf{1 . 3 5} \mathbf{m}}}$
(C) $v_{f x}=v_{i x}=1.04 \mathrm{~m} / \mathrm{s}$
$v_{f y}=v_{i y}-g t=-0.600-9.8(1.30)=-13.3 \mathrm{~m} / \mathrm{s}$
$v_{f}=\sqrt{v_{f x}^{2}+v_{f y}^{2}}=\underline{\underline{\mathbf{1 3}} \mathbf{3} \mathbf{~ m} / \mathbf{s}}$

