This print-out should have 10 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

Holt SF 12Rev 50
 00110.0 points

A sound wave traveling at $341 \mathrm{~m} / \mathrm{s}$ is emitted by the foghorn of a tugboat. An echo is heard 3.60 s later.

How far away is the reflecting object?

Piano String

00210.0 points

A piano string of mass per unit length $0.00482 \mathrm{~kg} / \mathrm{m}$ is under a tension of 1660 N .

Find the speed with which a wave travels on this string.

Transverse Waves on a String 00310.0 points

Transverse waves with a speed of $40.5 \mathrm{~m} / \mathrm{s}$ are to be produced in a taut string. A 5.67 m length of string with a total mass of 0.0522 kg is used.

What is the required tension?

Waves in a Pond
 00410.0 points

A rock dropped into a pond produces a wave that takes 18.9 s to reach the opposite shore, 40 m away. The distance between consecutive crests of the wave is 4.2 m .

What is the frequency of the wave?

Wave Speed
 $005 \quad 10.0$ points

For a certain transverse wave, the distance between two successive maxima is 1.75 m and eight maxima pass a given point along the direction of travel every 16.4 s .

Calculate the wave speed.

Wave on Steel Piano Wire $006 \quad 10.0$ points

A carbon steel piano wire 4.4 m long with a cross-sectional area of $2 \times 10^{-6} \mathrm{~m}^{2}$ and mass 0.1 kg is stretched 20 mm .

Determine the speed of transverse waves on the string. For carbon steel, Young's modulus is $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$.

Correct answer: $282.843 \mathrm{~m} / \mathrm{s}$.

Waves on a Lake
 00710.0 points

A group of swimmers is resting in the sun on an off-shore raft. They estimate that 3.36 m separate a trough and an adjacent crest of surface waves on the lake. They count 14 crests that pass by the raft in 23.9 s.

How fast are the waves moving?
Correct answer: $3.9364 \mathrm{~m} / \mathrm{s}$.

Standing Waves 21

008 (part 1 of 3) 10.0 points
A sinusoidal wave in a rope is described by the wave function

$$
y=A \sin (k x+\omega t),
$$

where $A=0.306 \mathrm{~m}, k=0.903 \mathrm{~m}^{-1}, \omega=$ $14 \mathrm{rad} / \mathrm{s}, x$ and y are in meters, and t is in seconds.

What is the length of the string? The rope has a linear mass density of $1.9 \mathrm{~g} / \mathrm{m}$. The acceleration of gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Correct answer: 27.8325 m .

009 (part 2 of 3) $\mathbf{1 0 . 0}$ points

What is the velocity of the wave?
Correct answer: $15.5039 \mathrm{~m} / \mathrm{s}$.

010 (part 3 of $\mathbf{3}$) $\mathbf{1 0 . 0}$ points

If the tension in the rope is provided by an arrangement like the one illustrated, what is the value of the suspended mass?

Correct answer: 0.0466024 kg .

