This print-out should have 7 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

Serway CP 0903
 00110.0 points

The heels on a pair of women's shoes have radii of 0.45 cm at the bottom.

If 33% of the weight of a woman weighing 515 N is supported by each heel, find the stress on each heel.

Lighthouse Pendulum

00210.0 points

A visitor to a lighthouse wishes to determine the height of the tower. She ties a spool of thread to a small rock to make a simple pendulum, which she hangs down the center of a spiral staircase of the tower. The period of oscillation is 10 s .

The acceleration of gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
What is the height of the tower?

Gravity on a New Planet 00310.0 points

Having landed on a newly discovered planet, an astronaut sets up a simple pendulum of length 1.18 m and finds that it makes 140 complete oscillations in 664 s . The amplitude of the oscillations is very small compared to the pendulum's length.

What is the gravitational acceleration on the surface of this planet?

Oscillation on a Spring 004 (part 1 of 3) $\mathbf{1 0 . 0}$ points

A 174 g mass is connected to a light spring of force constant $7 \mathrm{~N} / \mathrm{m}$ that is free to oscillate on a horizontal, frictionless track. The mass is displaced 8 cm from the equilibrium point and released from rest.

Find the period of the motion.

005 (part 2 of 3) $\mathbf{1 0 . 0}$ points
What is the maximum speed of the mass?

006 (part 3 of 3) $\mathbf{1 0 . 0}$ points

What is the maximum acceleration of the mass?

Steel Cable 02 00710.0 points

A tugboat tows a ship using a steel cable. The maximal strain the cable may sustain without breaking is 0.037 . Suppose the drag exerted on the towed ship by the water is $4.5 \times 10^{6} \mathrm{~N}$ and the tugboat is using the thinnest steel cable that would do the job (no safety margin).

What is the diameter of this cable? The Young's modulus of steel is $2 \times 10^{11} \mathrm{~Pa}$.

Correct answer: 0.0278257 m .

