This print-out should have 14 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

Conceptual 0603
 001 (part 1 of 2) $\mathbf{1 0 . 0}$ points

Two 0.5 kg balls move away from each other, one traveling $4 \mathrm{~m} / \mathrm{s}$ to the right, the other $2 \mathrm{~m} / \mathrm{s}$ to the left.

What is the magnitude of the total momentum of the system?

002 (part 2 of 2) $\mathbf{1 0 . 0}$ points

Two 1000 kg cars drive east; the first moving at $25 \mathrm{~m} / \mathrm{s}$, the second at $20 \mathrm{~m} / \mathrm{s}$.

What is the magnitude of the total momentum of the system?

Pitching Machine Recoil 00310.0 points

A baseball player uses a pitching machine to help him improve his batting average. He places the 45.4 kg machine on a frozen pond. The machine fires a 0.106 kg baseball horizontally at a speed of $30.3 \mathrm{~m} / \mathrm{s}$.

What is the magnitude of the recoil velocity of the machine?

Serway CP 0618
 00410.0 points

$\mathrm{A}(\mathrm{n}) 645 \mathrm{~N}$ man stands in the middle of a frozen pond of radius 12 m . He is unable to get to the other side because of a lack of friction between his shoes and the ice. To overcome this difficulty, he throws his 1.2 kg physics textbook horizontally toward the north shore, at a speed of $4.5 \mathrm{~m} / \mathrm{s}$.

The acceleration of gravity is $9.81 \mathrm{~m} / \mathrm{s}^{2}$.
How long does it take him to reach the south shore?

Serway CP 0402
 00510.0 points

A football punter accelerates a 0.33 kg football from rest to a speed of $9 \mathrm{~m} / \mathrm{s}$ in 0.18 s .

What constant force does the punter exert on the ball?

Bouncing a Superball $006 \quad 10.0$ points

A child bounces a 46 g superball on the sidewalk. The velocity change of the superball is from $26 \mathrm{~m} / \mathrm{s}$ downward to $14 \mathrm{~m} / \mathrm{s}$ upward.

If the contact time with the sidewalk is $\frac{1}{800}$ s , what is the magnitude of the average force exerted on the superball by the sidewalk?

Correct answer: 1472 N.

Collision of Spheres
 00710.0 points

$\mathrm{A}(\mathrm{n}) 3.31 \mathrm{~kg}$ sphere makes a perfectly inelastic collision with a second sphere that is initially at rest. The composite system moves with a speed equal to one-third the original speed of the 3.31 kg sphere.

What is the mass of the second sphere?
Correct answer: 6.62 kg .

Hitting a Softball

008 (part 1 of 2) 10.0 points
$\mathrm{A}(\mathrm{n}) 0.6 \mathrm{~kg}$ softball is pitched at a speed of $10 \mathrm{~m} / \mathrm{s}$. The batter hits it back directly at the pitcher at a speed of $29 \mathrm{~m} / \mathrm{s}$. The bat acts on the ball for 0.018 s .

What is the magnitude of the impulse imparted by the bat to the ball?

Correct answer: $23.4 \mathrm{~N} \cdot \mathrm{~s}$.
009 (part 2 of 2) $\mathbf{1 0 . 0}$ points
What is the magnitude of the average force exerted by the bat on the ball?

Correct answer: 1300 N.

Illegal Soccer Hit

$010 \quad 10.0$ points

A(n) 0.254 kg soccer ball approaches a player horizontally with a speed of $19.6 \mathrm{~m} / \mathrm{s}$. The player illegally strikes the ball with her hand and causes it to move in the opposite direction with a speed of $34.5 \mathrm{~m} / \mathrm{s}$.

What is the magnitude of the impulse delivered to the ball by the player?

Correct answer: $13.7414 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$.

Holt SF 06Rev 39
 $011 \quad 10.0$ points

A 14 g toy car moving to the right at $24 \mathrm{~cm} / \mathrm{s}$ has a head-on nearly elastic collision with a 22 g toy car moving in the opposite direction at $32 \mathrm{~cm} / \mathrm{s}$. After colliding, the 14 g car moves with a velocity of $44 \mathrm{~cm} / \mathrm{s}$ to the left.

Find the speed of the second car after the collision.

Correct answer: $11.2727 \mathrm{~cm} / \mathrm{s}$.

An $m_{2}=1.7 \mathrm{~kg}$ can of soup is thrown upward with a velocity of $v_{2}=5.9 \mathrm{~m} / \mathrm{s}$. It is immediately struck from the side by an $m_{1}=0.66 \mathrm{~kg}$ rock traveling at $v_{1}=7.1 \mathrm{~m} / \mathrm{s}$. The rock ricochets off at an angle of $\alpha=68^{\circ}$ with a velocity of $v_{3}=6.3 \mathrm{~m} / \mathrm{s}$.

What is the angle of the can's motion after the collision?

Correct answer: 63.1314°.

013 (part 2 of 2) 10.0 points

With what speed does the can move immediately after the collision?

Impact of a Bullet
 $014 \quad 10.0$ points

$\mathrm{A}(\mathrm{n}) 10 \mathrm{~g}$ bullet is fired into $\mathrm{a}(\mathrm{n}) 110 \mathrm{~g}$ block of wood at rest on a horizontal surface and stays inside. After impact, the block slides 10 m before coming to rest.

The acceleration of gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
If the coefficient of friction between the surface and the block is 0.6 , find the speed of the bullet before impact.

Correct answer: $130.132 \mathrm{~m} / \mathrm{s}$.

