This print-out should have 14 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

Holt SF 07A 03
 00110.0 points

A car on a Ferris wheel has an angular displacement of $\frac{\pi}{4} \mathrm{rad}$, which corresponds to an arc length of 24.7 m .

What is the Ferris wheel's radius?

Answer in meters.

Angular Speed of a Record 002 (part 1 of 2) $\mathbf{1 0 . 0}$ points
A record has an angular speed of $44.2 \mathrm{rev} / \mathrm{min}$.

What is its angular speed?
Answer in rad/s.

003 (part 2 of 2) $\mathbf{1 0 . 0}$ points
Through what angle does it rotate in 0.68 s?
Answer in radians.

Circular Race Track 03

004 (part 1 of 2) $\mathbf{1 0 . 0}$ points
A racing car travels on a circular track of radius 384 m , moving with a constant linear speed of $65.3 \mathrm{~m} / \mathrm{s}$.

Find its angular speed.
Correct answer: $0.170052 \mathrm{rad} / \mathrm{s}$.
005 (part 2 of 2) 10.0 points
Find the magnitude of its acceleration.
Correct answer: $11.1044 \mathrm{~m} / \mathrm{s}^{2}$.
Rotating Wheel 04
006 (part 1 of 2) $\mathbf{1 0 . 0}$ points
A wheel starts from rest and rotates with constant angular acceleration to an angular speed of $15.9 \mathrm{rad} / \mathrm{s}$ in 2.54 s .

Find the magnitude of the angular acceleration of the wheel.

Correct answer: $6.25984 \mathrm{rad} / \mathrm{s}^{2}$.
007 (part 2 of 2) 10.0 points
Find the angle in radians through which it rotates in this time.

Correct answer: 20.193 rad.

Turntable Comes to a Stop 008 (part 1 of 2) $\mathbf{1 0 . 0}$ points

The turntable of a record player rotates at a rate of $45.6 \mathrm{rev} / \mathrm{min}$ and takes 53.5 s to come to rest when switched off.

Find the deceleration.
Correct answer: $0.0892565 \mathrm{rad} / \mathrm{s}^{2}$.
009 (part 2 of 2) $\mathbf{1 0 . 0}$ points
How many revolutions did it make before coming to rest?

Correct answer: 20.33 rev.

Holt SF 07H 03
 $010 \quad 10.0$ points

A dog sits 1.79 m from the center of a merry-go-round with an angular speed of $1.48 \mathrm{rad} / \mathrm{s}$.

If the magnitude of the force that maintains the dog's circular motion is 35.9 N , what is the dog's mass?

Correct answer: 9.15626 kg .

Serway CP 0721
 $011 \quad 10.0$ points

A 2451 kg car rounds a circular turn of radius 35 m . The road is flat and the coefficient of friction between tires and road is 0.35 .

The acceleration of gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
How fast can the car go without skidding?
Correct answer: $10.9567 \mathrm{~m} / \mathrm{s}$.

Car on a Flat Curve
 $012 \quad 10.0$ points

A car is moving at $20 \mathrm{~m} / \mathrm{s}$ along a curve on a horizontal plane with radius of curvature 51 m .

The acceleration of gravity is 9.8 .
What is the required minimum coefficient of static friction between the road and the car's tires to keep the car from skidding?

Correct answer: 0.80032 .

Serway CP 0751
 $013 \quad 10.0$ points

In a popular amusement park ride, a rotating cylinder of radius 3.19 m is set in rotation at an angular speed of $5.65 \mathrm{rad} / \mathrm{s}$, as shown. The floor then drops away, leaving the riders suspended against the wall in a vertical position.

What minimum coefficient of friction between a rider's clothing and the wall of the cylinder is needed to keep the rider from slipping? The acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Correct answer: 0.0962362 .

Orbiting Small Moon
 01410.0 points

Given: $G=6.67259 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$
A small Moon of a planet has an orbital period of 2.77 days and an orbital radius of $3.7 \times 10^{5} \mathrm{~km}$.

From these data, determine the mass of the planet.

Correct answer: $5.23219 \times 10^{26} \mathrm{~kg}$.

