This print-out should have 12 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

Average Speed on a Trip
 001 (part 1 of 2) $\mathbf{1 0 . 0}$ points

A person travels by car from one city to another. She drives for 26 min at $69.4 \mathrm{~km} / \mathrm{h}$, 9.7 min at $87 \mathrm{~km} / \mathrm{h}, 44.8 \mathrm{~min}$ at $47.5 \mathrm{~km} / \mathrm{h}$, and spends 19.4 min along the way eating lunch and buying gas.

Determine the distance between the cities along this route.

Answer in km.

002 (part 2 of 2) $\mathbf{1 0 . 0}$ points
Determine the average speed for the trip.

Answer in km/h.

Holt SF 03Rev 60
 00310.0 points

The eye of a hurricane passes over Grand Bahama Island. It is moving in a direction 52.3° north of west with a speed of $41.8 \mathrm{~km} / \mathrm{h}$. Exactly 3.00 hours later, the course of the hurricane shifts due north, and its speed slows to $25.2 \mathrm{~km} / \mathrm{h}$, as shown.

How far from Grand Bahama is the hurricane 5.25 h after it passes over the island?

Correct answer: 173.757 km .

Serway CP 0407
 00410.0 points

Then air exerts a forward force of 11 N on the propeller of a 0.29 kg model airplane.

If the plane accelerates forward at $2 \mathrm{~m} / \mathrm{s}^{2}$, what is the magnitude of the resistive force exerted by the air on the airplane?

Correct answer: 10.42 N .
Serway CP 0462
005 (part 1 of 3) 10.0 points
Three masses are connected by light strings as shown in the figure.

The string connecting the m_{1} and the m_{2} passes over a light frictionless pulley.

Given $m_{1}=2.98 \mathrm{~kg}, m_{2}=3.69 \mathrm{~kg}, m_{3}=$ 1.27 kg , and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. The acceleration of gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Find the downward acceleration of m_{2} mass.

Correct answer: $2.44383 \mathrm{~m} / \mathrm{s}^{2}$.
006 (part 2 of 3) 10.0 points
Find the tension in the string connecting the m_{1} and the m_{2} masses.

Correct answer: 36.4866 N.
007 (part 3 of 3) $\mathbf{1 0 . 0}$ points
Find the tension in the string connecting the m_{2} and the m_{3} masses.

Correct answer: 9.34234 N.

Pulling Two Blocks 03

008 (part 1 of 4) $\mathbf{1 0 . 0}$ points
Two blocks on a frictionless horizontal surface are connected by a light string.

The acceleration of gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Find the acceleration of the system.
Correct answer: $1.72823 \mathrm{~m} / \mathrm{s}^{2}$.
009 (part 2 of 4) 10.0 points

What is the tension in the string between the blocks?

Correct answer: 16.7811 N.

010 (part 3 of 4) 10.0 points

If the surface were frictional, and the coefficient of kinetic friction between each block and the surface is 0.117 , what would be the new acceleration?

Correct answer: $0.581628 \mathrm{~m} / \mathrm{s}^{2}$.

011 (part 4 of 4) $\mathbf{1 0 . 0}$ points

What would be the new tension in the string between the blocks?

Correct answer: 16.7811 N.

Forces Accelerating a Block

 $012 \quad 10.0$ pointsThe magnitude of each force is 290 N , the force on the right is applied at an angle 24° and the mass of the block is 17 kg . The coefficient of friction is 0.293 .

The acceleration of gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

What is the magnitude of the resulting acceleration?

Correct answer: $31.8044 \mathrm{~m} / \mathrm{s}^{2}$.

