This print-out should have 10 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

Holt SF 04A 02
 001 (part 1 of 4) $\mathbf{1 0 . 0}$ points

A crate is pulled to the right with a force of 80.3 N , to the left with a force of 123.5 N , upward with a force of 618.7 N , and downward with a force of 248.4 N .

What is the net external force in the x direction?

Correct answer: -43.2 N .

002 (part 2 of 4) $\mathbf{1 0 . 0}$ points

What is the net external force in the y direction?

Correct answer: 370.3 N.

003 (part 3 of 4) 10.0 points
What is the magnitude of the net external force on the crate?

Correct answer: 372.811 N.

004 (part 4 of 4) $\mathbf{1 0 . 0}$ points

What is the direction of the net external force on the crate (as an angle between -180° and 180°, measured from the positive x axis with counterclockwise positive)?

Correct answer: 96.6542°.

Sum of Three Vectors 02 005 (part 1 of 2) 10.0 points

Consider three force vectors \vec{F}_{1} with magnitude 35 N and direction $140^{\circ}, \vec{F}_{2}$ with magnitude 33 N and direction -130°, and \vec{F}_{3} with magnitude 18 N and direction 110°. All direction angles θ are measured from the positive x axis: counter-clockwise for $\theta>0$ and clockwise for $\theta<0$.

What is the magnitude F of the net force vector $\vec{F}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}$?

Correct answer: 55.9928 N.

006 (part 2 of 2) $\mathbf{1 0 . 0}$ points
What is the direction of \vec{F} as an angle between the limits of -180° and $+180^{\circ}$ from the positive x axis with counterclockwise as the positive angular direction.

Correct answer: 165.38°.

Hanging Weight 04

007 (part 1 of 2) 10.0 points
Consider the 688 N weight held by two cables shown below. The left-hand cable had tension T_{2} and makes an angle of θ_{2} with the ceiling. The right-hand cable had tension 440 N and makes an angle of 41° with the ceiling.

The right-hand cable makes an angle of 41° with the ceiling and has a tension of 440 N .

a) What is the tension T_{2} in the left-hand cable slanted at an angle of θ_{2} with respect to the wall?

Correct answer: 519.365 N .
008 (part 2 of 2) $\mathbf{1 0 . 0}$ points
b) What is the angle θ_{2} which the left-hand cable makes with respect to the ceiling?

Correct answer: 50.2543°.

Holt SF 07I 01 00910.0 points

Two balls, each with a mass of 0.881 kg , exert a gravitational force of $8.19 \times 10^{-11} \mathrm{~N}$ on each other.

How far apart are the balls? The value of the universal gravitational constant is $6.673 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$.

Correct answer: 0.795233 m .

AP B 1993 MC 48
 $010 \quad 10.0$ points

The planet Krypton has a mass of $7 \times 10^{23} \mathrm{~kg}$ and radius of $3.6 \times 10^{6} \mathrm{~m}$.

What is the acceleration of an object in free fall near the surface of Krypton? The gravitational constant is $6.6726 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$.

Correct answer: $3.60403 \mathrm{~m} / \mathrm{s}^{2}$.

