Electric Circuits

Introduction:

A few well known facts:

- Light bulbs connected in series have the same current. The more bulbs that are in series, the dimmer they become.
- Light bulbs connected in parallel have the same voltage. Bulbs maintain their brightness when they are in parallel.
- The brighter the light bulb, the greater its power consumption.

Make sure your group has each of the following: a battery eliminator (a power pack that plugs into a wall outlet), 5 identical miniature light bulbs (with mounts), several patch cords, and connectors (alligator or fork shaped).

Procedure:

Set the battery eliminator at 3 VDC. Connect each mounted light bulb to the battery eliminator, one at a time, and note the brightness. This represents the "baseline" power level for each bulb.

Build each circuit described below and, on a separate sheet of paper, draw the corresponding circuit diagram.

CIRCUIT 1 - The minimum power circuit ($\mathrm{P} 1=\mathrm{P} 2=\mathrm{P} 3=\mathrm{P} 4=\mathrm{P} 5=$ minimum $)$
There is only one way to wire the bulbs so that they have the same power which is lowest possible for your equipment.

CIRCUIT 2 - The maximum power circuit ($\mathrm{P} 1=\mathrm{P} 2=\mathrm{P} 3=\mathrm{P} 4=\mathrm{P} 5=$ maximum)
There is only one way to wire the bulbs so that they have the same power which is highest possible for your equipment.

CIRCUIT 3 - P1 > P2 = P3 = P4 = P5
There are two possible circuits - you are required to find only one.

CIRCUIT 4 - P1 = P2 > P3 = P4 = P5

There are two possible circuits - you are required to find only one.

CIRCUIT $5-\mathrm{P} 1, \mathrm{P} 2=\mathrm{P} 3, \mathrm{P} 4=\mathrm{P} 5$

There are two possible circuits - you are required to find only one.
CIRCUIT 6 - P1, P2, P3, P4 = P5
There are two possible circuits - you are required to find only one.

Before you leave lab, turn in your sheet of circuit diagrams. Don't forget to write the names of your partners at the top!

